1. Patwari, N., J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal, "Locating the nodes --- Cooperative localization in wireless sensor networks," IEEE Signal Processing Magazine, Vol. 22, No. 4, 54-69, Jul. 2005.
doi:10.1109/MSP.2005.1458287
2. Gezici, S., Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, "Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks," IEEE Signal Processing Magazine, Vol. 22, No. 4, 70-84, 2005.
doi:10.1109/MSP.2005.1458289
3. Zhao, F., J. Shin, and J. Reich, "Information-driven dynamic sensor collaboration," IEEE Signal Processing Magazine, Vol. 19, No. 2, 61-72, 2002.
doi:10.1109/79.985685
4. Guo, D. and X. Wang, "Dynamic sensor collaboration via sequential Monte Carlo," IEEE Journal on Selected Areas in Communications, Vol. 22, No. 6, 1037-1047, 2004.
doi:10.1109/JSAC.2004.830897
5. Isler, V. and R. Bajcsy, "The sensor selection problem for bounded uncertainty sensing models," IEEE Trans. Automation Science and Engineering, Vol. 3, No. 4, 372-380, 2006.
doi:10.1109/TASE.2006.876615
6. Tharmarasa, R., T. Kirubarajan, and M. L. Hernandez, "Large-scale optimal sensor array management for multitarget tracking," IEEE Trans. Systems, Man, and Cybernetics --- Part C: Applications and Reviews, Vol. 37, No. 5, 803-814, 2007.
doi:10.1109/TSMCC.2007.901003
7. Chhetri, A. S., D. Morrell, and A. Papandreou-Suppappola, "The use of particle filtering with the unscented transform to schedule sensors," Proc. ICASSP-04, Vol. 2, 301-304, Montreal, QC, Canada, 2004.
8. Thatte, G. and U. Mitra, "Sensor selection and power allocation for distributed estimation in sensor networks: Beyond the star topology," IEEE Trans. Signal Processing, Vol. 56, No. 7, 2649-2661, 2008.
doi:10.1109/TSP.2008.917038
9. Ristic, B., A. Arulampalam, and N. Gordon, Beyond the Kalman Filter-particle Filters for Tracking Applications, Artech House, 2004.
10. Vander Merwe, R., A. Doucet, N. de Freitas, and E. Wan, "The unscented particle filter," Advances in Neural Information Processing Systems, Vol. 13, 2000.
11. Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," IEEE Trans. Signal Processing, Vol. 50, No. 2, 174-188, 2002.
doi:10.1109/78.978374
12. Hue, C., J. Cadre, and P. Perez, "Sequential Monte Carlo methods for multiple target tracking and data fusion," IEEE Trans. Signal Processing, Vol. 50, No. 2, 309-325, 2002.
doi:10.1109/78.978386
13. Bergman, N., Recursive Bayesian Estimation: Navigation and Tracking Applications, Ph.D. Thesis, Linkoping Universit, 1999.
14. Tichavsky, P., C. H. Muravchik, and A. Nehorai, "Posterior Cramer-Rao bounds for discrete-time nonlinear filtering," IEEE Trans. Signal Processing, Vol. 46, No. 5, 1386-1396, 1998.
doi:10.1109/78.668800
15. Robert, C. P. and G. Casella, Monte Carlo Statistical Methods, Springer, 1999.
16. Chen, J. F., Z. G. Shi, S. H. Hong, and K. S. Chen, "Grey prediction based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 93, 237-254, 2009.
doi:10.2528/PIER09042204