Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-08-02
Inverse Source Problem from the Knowledge of Radiated Field Over Multiple Rectilinear Domains
By
Progress In Electromagnetics Research M, Vol. 8, 131-141, 2009
Abstract
This paper deals with an inverse source problem starting from the knowledge of the radiated field in Fresnel and near zone. In particular, here we are concerned with a 2D geometry characterized by a rectilinear magnetic source and measurement rectilinear domains in Fresnel and near zone. The effect of the added knowledge of the radiated field over a second observation domain is investigated via the Singular Values Decomposition of the radiation operator and we point out how the addition of a second observation domain allows us always to achieve a better noise rejection. Also, we determine conditions under which the knowledge of the field over the second domain increases the information content (as the number of singular values of the radiation operator before their asymptotic decay) for both the Fresnel and near zone cases. Finally reconstruction examples with noise-free and noisy data are presented.
Citation
Francesco Soldovieri, Claudio Mola, Raffaele Solimene, and Rocco Pierri, "Inverse Source Problem from the Knowledge of Radiated Field Over Multiple Rectilinear Domains," Progress In Electromagnetics Research M, Vol. 8, 131-141, 2009.
doi:10.2528/PIERM09062607
References

1. Pierri, R. and F. Soldovieri, "On the information content of the radiated fields in the near zone over bounded domains," Inverse Problems, Vol. 14, No. 2, 321-337, 1998.
doi:10.1088/0266-5611/14/2/008

2. Solimene, R. and R. Pierri, "Number of degrees of freedom of the radiated field over multiple bounded domains," Opt. Lett., Vol. 32, 3113-3115, 2007.
doi:10.1364/OL.32.003113

3. Bucci, O. M., C. Gennarelli, G. Riccio, and C. Savarese, "Sampling representation of electromagnetic fields over three-dimensional domains," Radio Science, Vol. 34, 567-574, 1999.
doi:10.1029/1999RS900013

4. Sten, J. C.-E. and E. A. Marengo, "Inverse source problem in an oblate spheroidal geometry," IEEE Transactions on Antennas and Propagation, Vol. 54, 3418-3428, 2006.
doi:10.1109/TAP.2006.884292

5. D'Agostino, F., F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, "Near field-far field transformation technique with helicoidal scanning for elongated antennas," Progress In Electromagnetics Research B, Vol. 4, 249-261, 2008.
doi:10.2528/PIERB08011503

6. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics, 1998.

7. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons Publishers, Inc., 1989.

8. Barakat, R. and G. Newsam, "Algorithms for reconstruction of partially known, band-limited Fourier-transform pairs from noisy data," J. Opt. Soc. Am. A, Vol. 2, 2027-2039, 1985.
doi:10.1364/JOSAA.2.002027

9. Frieden, B. R., "Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions," Progress in Optics, Vol. 4, 311-407, E. Wolf (ed.), North-Holland, Amsterdam, 1971.

10. Miller, D. A. B., "Communicating with waves between volumes: Evaluating orthogonal spatial channels and limits on coupling strengths," Optics Letters, Vol. 39, No. 11, 1681-1699, 2000.
doi:10.1364/AO.39.001681