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Abstract—This paper deals with an inverse source problem starting
from the knowledge of the radiated field in Fresnel and near zone. In
particular, here we are concerned with a 2D geometry characterized
by a rectilinear magnetic source and measurement rectilinear domains
in Fresnel and near zone. The effect of the added knowledge of the
radiated field over a second observation domain is investigated via the
Singular Values Decomposition of the radiation operator and we point
out how the addition of a second observation domain allows us always
to achieve a better noise rejection. Also, we determine conditions under
which the knowledge of the field over the second domain increases the
information content (as the number of singular values of the radiation
operator before their asymptotic decay) for both the Fresnel and near
zone cases. Finally reconstruction examples with noise-free and noisy
data are presented.

1. INTRODUCTION

This work falls within the more general framework of the inverse
problem of determining a radiating source starting from the knowledge
of its radiated field [1–5]. In particular, within a two-dimensional and
scalar geometry, we consider the canonical case of a bounded rectilinear
magnetic source whose radiated field is collected over multiple bounded
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rectilinear domains parallel to the source and located first in the Fresnel
zone and after in the near zone [1, 2].

As well known, such a problem can be stated as a linear inverse
one [6] and the main effort of the work is concerned with the analysis
of the Number of Degrees of Freedom (NDF) of the radiated field and
to establish the dependence of NDF on the geometrical features of the
source and observation domains.

The analysis is performed by means of the Singular Values
Decomposition (SVD) of the relevant linear integral operator (radiation
operator). Here we focus the attention on the increase of the
information content in dependence of the added knowledge of the
radiated field over a second observation domain by pointing out the
different behavior when the domains are in Fresnel or near zone [1, 2].

Therefore, the work is organized as follows. Section 2 gives
the formulation of the inverse source problem and the results for a
single observation domain are briefly recalled. Section 3 addresses the
problem of the determination of the magnetic source starting from the
knowledge of the field over two domains located in Fresnel zone and
an estimation of the NDF behavior is provided by resorting to the
results in [2]. Section 4 is concerned with the case of the observation
domains in the near zone and reconstruction examples are presented
with noise-free and noisy data. Finally, conclusions follow.

2. THE CASE OF THE SINGLE DOMAIN

This section is devoted to formulate the inverse problem of the
determination of a rectilinear magnetic current, having a finite support,
starting from the knowledge of the radiated field over rectilinear finite
observation domains (see Fig. 1).
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Figure 1. Geometry of the problem.
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We assume that the magnetic source is directed and invariant
along the y-axis and supported over S = [−XS , XS ] along the x-axis.
Therefore, here a 2D problem is dealt with.

The knowledge of the tangential component (along the x-axis)
of the radiated field E is assumed over a rectilinear domain O1 =
[−X1, X1] at quota z1. In this case, the relationship between tangential
component of the electric field E and the magnetic current Jm, is given
by [7]

E(x, z) = jβ/4
∫ XS

−XS

H
(2)
1 (βr)z1

r
Jm(x′)dx′ x ∈ O1 (1)

where H
(2)
1 (·) is the Hankel function of second kind and first order,

β = 2π/λ is the wave-number and r =
√

(x− x′)2 + z2
1 denotes the

distance between the generic observation point and source point.
Equation (1) can be schematically seen as a linear transformation

as
A : Jm ∈ L2(S) → E ∈ L2(O1) (2)

Therefore, the problem of the reconstruction of the magnetic current
Jm starting from the radiated field E can be stated as the inversion of
the operator A.

The operator A is compact [1, 2, 6] and hence its singular values
cluster to zero asymptotically (i.e., as their index tends to infinity).
This means that the problem at hand is ill-posed. Accordingly, in
order to obtain a stable inversion the singular spectrum should be
suitably truncated by accounting for the noise level on data [6, 8].

For the case at hand, however, it has been shown that the singular
values of A exhibit an almost step-like behavior [1, 2]. That is the
singular values are almost constant before a knee after that they
decay exponentially fast. Accordingly, two important consequences
can be pointed out. First, the inversion of A is a severely ill-posed
problem [6]. Second, the number of singular values to be retained in
a regularized reconstruction scheme is essentially finite and generally
weakly dependent on noise. This permits to identify the Number of
Degrees of Freedom (NDF) of the radiated field just as the number of
singular values above the asymptotic decay.

In the case of a single rectilinear observation domain, the
problem of determining the NDF of radiated field has been dealt with
analytically for the far-field and Fresnel zones [1]. In this case, the
singular system of the operator is given in a closed form and the NDF
is estimated as

N ∼= 4XSX1

λz1
(3)
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while the singular functions are strictly related to the prolate
spheroidal wave-functions [9]. Relationship (3) states an angular
criterion for determining the NDF in far field and Fresnel zone, i.e.,
the NDF is related to the observation angle given by

tan(Θ) =
X1

z1
(4)

In the same work [1], an analysis was provided also for the NDF of
radiated field collected over a bounded rectilinear domain in near zone.
These results will be recalled in the Section 4.

3. THE CASE OF TWO DOMAINS IN FRESNEL ZONE

This section is devoted to deal with the case of two observation domains
located in the Fresnel zone, (see geometry of the problem depicted
in Fig. 1). Besides the first observation domain O1 = [−X1, X1] at
quota z1, a second observation domain O2 = [−X2, X2] at quota z2 is
considered.

Under the Fresnel paraxial approximation, the relationship (1)
between the magnetic source Jm(x) and the tangential component of
the electric field over the observation domain Oi can be approximated
as:

Ei(x, zi) =
K exp[−jβzi]√

zi

∫ XS

−XS

exp
[
−j

β(x− x′)2

2zi

]
Jm(x′)dx′

x ∈ Oi (5)

where i = 1, 2 and the quantity K accounts for factors not dependent
on the geometry of the problem. The NDF of the radiated field can be
estimated by analyzing the behavior of singular values of operator in
Eq. (5) that can be rewritten as

B : Jm ∈ L2(S) → E = (E1, E2) ∈ L2(O1)× L2(O2) (6)

If we denote by {σn, un, vn}∞n=0, the singular system [6] of the operator
B in Eq. (6), we have that the associated eigenvalue problem is

σ2
nun = B+Bun (7)

where B+ is the adjoint operator [6] of B.
By resorting to the results in [2], Eq. (6) can be arranged, a part

the unessential quantity outside the integral, as

B+B ∼= 2λPSBΩ1PS + λPSBΩ2PS + λPSBΩ3PS (8)
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where PS is a spatial limiting projector over S and BΩ1 , BΩ2 , BΩ3 are
band limiting projectors, respectively, over

Ω1 =
[
−min

{
βX1

z1
,
βX2

z2

}
, min

{
βX1

z1
,
βX2

z2

} ]

Ω2 =
[
min

{
−βX1

z1
,− βX2

z2

}
, max

{
−βX1

z1
,− βX2

z2

} ]

Ω3 =
[
min

{
βX1

z1
,
βX2

z2

}
, max

{
βX1

z1
,
βX2

z2

} ]
(9)

The eigensystem of each single operator defined on the basis of Eqs. (8)
and (9) is known in closed form by resorting to the prolate spheroidal
wave functions. For each operator, the behaviour of eigenvalues is
strictly related to the spatial-bandwidth products ck = m{S}m{Ωk}

4 ,
k ∈ {1, 2, 3}, where m {·} denotes the extent of the interval it refers to.
If the products ck are sufficiently larger than one, the eigenvalues of the
operator B+B can be estimated according to the discussion reported
in [2]. In general, the singular values will exhibit a two step-like
behavior with the first

[
2c1
π

]
eigenvalues equal to 2λ, then, after such a

first step, further
[

2c2
π

]
+

[
2c3
π

]
eigenvalues will be equal to λ; after this

second step an exponential asymptotic decay of the eigenvalues occurs.
However, when

∣∣∣2βXS
π (X1

z1
− X2

z2
)
∣∣∣ tends to be closer or even less than

1, in force of definition of Ωi, the two-step behavior of the eigenvalues
disappears and a single step occurs at the index 2βXS

π
X1
z1

∼= 2βXS
π

X2
z2

.
Therefore, when X1

z1
= X2

z2
(i.e., the two observation domains subtend

the same angle Θ), eigenvalues behavior will have only one step at
theoretical value 2βXS

π
X1
z1

∼= 2βXS
π

X2
z2

. However, also in this case the
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Figure 2. Singular value behavior for the domains in the Fresnel zone.
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eigenvalues on the step are 2λ whereas in the case of single domain it
is λ.

Figure 2 confirms this expected behaviour. In particular, we
consider a magnetic current defined over a domain with XS = 20λ.
The first observation domain is at z1 = 180λ and with X1 = 10λ.
Three other cases have been considered where the quota of the second
observation domain is z2 = 216λ and z2 = 234λ and z2 = 252λ; the
extent of these observation domains is chosen so that they subtend the
same observation angle Θ (see Eq. (4)) of the first domain. The three
singular value curves for the case of two domains are almost coincident
and a slight difference is observed in the exponential decay, starting
from about −10 dB. Also, the singular values corresponding to the case
of single domain are at −3 dB below as compared to the ones of the two
domains; this is perfectly consistent with the theory discussed above.
Accordingly, we conclude that the case of two observation domains
exhibits clear advantages in terms of noise rejection. What is more,
such advantage can be further increased by adding more than one
observation domain. However, this point is not discussed in this paper.

4. ANALYSIS IN THE NEAR ZONE

This section is devoted to present some numerical results for the case
of two domains located in the near zone.

The case of a single observation domain in the near zone has been
investigated in [1] and a criterion for the determination of the NDF
has been provided as

N ∼=
[

2
λ

(R1 −R2)
]

(10)

where R1 =
√

(XS + X1)2 + z2
1 and R2 =

√
(XS −X1)2 + z2

1 .
Here, we aim at pointing out the differences between the case

of Fresnel zone, where an angular criterion holds for the NDF
determination, and the present case of the near zone.

To point out these differences, here we consider a source with
extent XS = 20λ. The first test case refers to an observation domain
located at z1 = 2.5λ and with X1 = 10λ so that Θ ≈ 2π/5.

The solid line of Fig. 3 depicts the singular values behavior in
the case of single domain for which estimate (10) returns N ∼= 38
being strictly consistent with the number of singular values before the
exponential decay shown in Fig. 3.

Three different cases have been considered with the addition of
the second observation domain at quota z2 = 5λ and z2 = 10λ and
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z2 = 15λ, respectively. The extents of the second domains have been
made so that all the observation domains subtend the same observation
angle, i.e., X2 = 20λ, X2 = 40λ and X2 = 60λ, respectively.

Figure 3 depicts the singular behavior also for these three cases:
two domains at z1 = 2.5λ and z2 = 5λ; two domains at z1 = 2.5λ and
z2 = 10λ; two domains at z1 = 2.5λ and z2 = 15λ.

By looking to the singular values it can be pointed out that,
differently from the case of the observation domains located in the
Fresnel zone, the second observation domain, even though subtends the
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Figure 3. Singular values behavior for the domains in near zone in
the case of X1 = 10λ and z1 = 2.5λ. Solid thick line corresponds to
the case of single domain; solid line corresponds to the case of two
domain located at z1 = 2.5λ and z2 = 5λ; dashed line corresponds to
the case of z1 = 2.5λ and z2 = 10λ; dotted line corresponds to the case
z1 = 2.5λ and z2 = 15λ.
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Figure 4. Comparison between the singular values in the case of the
single domain at z2 = 5λ and two domains at z1 = 2.5λ and z2 = 5λ.
The case of single domain (solid line); the case of two domains (dotted
line).



138 Soldovieri et al.

same angle Θ, permits to increase the NDF of the radiated field. This
result is also different from the expectations based on pure diffraction
arguments (as in Gabor’s criterion) [10].

A more thorough analysis about the addition of the second
observation domain, requires the comparison of the singular values
behavior in the case of the two domains also to the case of only a
single domain located at z2. Such a comparison, for the case of two
domains located at z1 = 2.5λ and z2 = 5λ and the case of a single
domain at z2 = 5λ is reported in Fig. 4. From such a figure, it can
be deduced that, in the case of two domains, the number of singular
values before the knee is dictated by the second observation domain. In
fact, estimate (10) evaluated for the second domain provides N ∼= 70.
The knowledge of the radiated field also over the first domain allows to
achieve better performances in terms of noise rejection in a way similar
to the one outlined for the Fresnel zone.

-60

-50

-40

-30

-20

-10

0

10

0 1009590858075706560555045403530252015105

single observation domain

z =2.5, z =5 (lambda)

z =2.5, z =10 (lambda)

z =2.5, z =15 (lambda)1

1

1

2

2

2

singular values index

 S
in

gu
la

r 
va

lu
es

 b
eh

av
io

r 
(d

B
)

Figure 5. Singular values behavior for the domains in near zone in
the case of X1 = 15λ.
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Figure 6. Singular values behavior for the domains in near zone in
the case of X1 = 20λ.
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Results reported in Figs. 5 and 6 show, instead, what happens
when the extent of the first observation domain (the closest one)
increases.

Figures 5 depicts the singular behavior with the same source and
the same quotas as the previous case reported in Fig. 3 but with
X1 = 15λ so that Θ ≈ 9π/20. As can be seen, the increase of the
information content (NDF) provided by the second observation domain
(subtending the same observation angle as the first domain) becomes
smaller as compared to the previous case. This is even more evident
from Fig. 6 where X1 = 20λ so that Θ ≈ 23π/50 has been considered.

We can conclude that when the angle subtended by the first
observation domain increases, the second observation domain provides
a smaller increase in the number of the NDF whereas the number of
significant singular values at 3 dB increases.

Let us now turn to consider some reconstruction results referring
to the case of an uniform magnetic current distribution.

In particular, the reconstructions reported below are obtained
by the Truncated SVD inversion scheme and by retaining only the
singular functions corresponding to the singular values larger than 0.1
the maximum one.

We consider an uniform current distribution with extent XS = 20λ
and first deal with the noise free-data.

For such a case, the reconstructions along with the actual current
profile (red dotted line) are reported in Fig. 7. In particular, the
blue dotted line refers to the case of only one observation domain at
z1 = 2.5λ whereas the blue solid line refers to the case of a double
observation domain at quotas z1 = 2.5λ and z2 = 5λ, respectively. As
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Figure 7. Source reconstruction for domains in near zone and
noise free data. Red dotted line: actual source current; blue dotted
line: Single domain reconstruction; blue solid line: Two-domains
reconstruction.
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Figure 8. The same as Fig. 7 but with noisy data (SNR = 10dB).

can be seen, the second case is characterized by a larger number of
the singular values and ensures a better reconstruction which is very
similar to the true one.

Finally, we report a reconstruction result with noisy data so that
the SNR is equal roughly to 10 dB. Fig. 8 is the analogous to Fig. 7
and it allows to point out the good performances of the TSVD scheme
in the rejection of the noise on data.

5. CONCLUSION

The paper has dealt with the study of the effect of multiple observation
domains on the NDF of the radiated fields in the 2D geometry and for
a magnetic source current.

Both the cases of domains in Fresnel and near zone have been
presented and the analysis has been performed thanks to the Singular
Values Decomposition of the relevant linear operator.

In particular, for the case of two domains in the Fresnel zone,
we have shown that an angular criterion holds in order to determine
the NDF of the radiated field. Moreover, it has been shown how the
addition of a second observation domain subtending the same angle of
the first one does not lead to an increase of the NDF while its effect
consists in improving the noise rejection by increasing the values of the
singular values of the operator.

In the case of domain in the near zone, we have pointed out that
a criterion different from the angular one holds; by exploiting such a
criterion we have observed that the NDF is dictated by the domain
giving the greater estimate in (10).
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As future developments, we plan to address the more realistic
case of the 3D geometry where a planar source and planar observation
domains will be considered.
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