1. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0
2. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electronic and electromagnetic properties of nanotubes," Phys. Rev. B, Vol., Vol. 57, 9485, 1998.
doi:10.1103/PhysRevB.57.9485
3. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, Vol. 60, 17136 -17149, 1999.
doi:10.1103/PhysRevB.60.17136
4. Miyamoto, Y., A. Rubio, S. G. Louie, and M. L. Cohen, "Self-inductance of chiral conducting nanotubes," Phys. Rev. B, Vol. 60 , 13885, 1999.
doi:10.1103/PhysRevB.60.13885
5. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, PIER 86, 111-134, 2008.
6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antenna," IEEE Trans. Antennas and Propagation, Vol. 53, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865
7. Burke, P. J., "Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 1, 129-144, 2002.
doi:10.1109/TNANO.2002.806823
8. Burke, P. J., "Corrections to Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans Nanotechnology, Vol. 3, 331, 2004.
9. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 2, 55-58, 2003.
doi:10.1109/TNANO.2003.808503
10. Burke, P. J., "Corrections to an RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 3, No. 331, 2004.
11. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part II: A transmission line model," IEEE Workshop on Signal Propagation on Interconnects, 185-188, 2006.
doi:10.1109/SPI.2006.289216
12. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part I: A fluid model and a 3D integral formulation," IEEE Workshop on Signal Propagation on Interconnects, 181-184, 2006.
doi:10.1109/SPI.2006.289215
13. Maffucci, A. and G. Miano, "Electromagnetic and circuital modeling of carbon nanotube interconnects," 2nd Electronics System-integration Technology Conference, 1051-1056, 2006.
14. Miano, G., A. Maffucci, F. Villone, and W. Zamboni, "Frequency-domain modelling of nanoscale electromagnetic devices using a fluid model and an integral formulation," International Conference on Electromagnetics in Advanced Applications, 233-236, 2007.
doi:10.1109/ICEAA.2007.4387280
15. Harrison, C. W., "Monopole with inductive loading," IEEE Trans. on Antennas and Propagation, Vol. 11, 394-400, 1963.
doi:10.1109/TAP.1963.1138059
16. Hanson, G. W., "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," EEE Trans. Antennas and Propagation, Vol. 54, 76-81, 2006.
doi:10.1109/TAP.2005.861550
17. Hanson, G. W., "Radiation efficiency of nanoradius dipole antennas in the microwave and far-infrared regime," IEEE Antennas and Propagation Magazine, Vol. 50, 66-77, 2008.
doi:10.1109/MAP.2008.4563565
18. Burke, P. J., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotube antenna performance," IEEE Trans. Nanotechnology, Vol. 5, 314-334, 2006.
doi:10.1109/TNANO.2006.877430
19. Huang, Y., W.-Y. Yin, and Q. H. Liu, "Performance prediction of carbon nanotube bundle dipole antennas," IEEE Trans. Nanotechnology, Vol. 7, 331-337, 2008.
doi:10.1109/TNANO.2007.915017
20. Slepyan, G. Y., M. V. Shuba, A. M. Nemilentsau, and S. A. Maksimenko, "Electromagnetic theory of nanodimentional antennas for terahertz, infrared and optical regimes," 12th International Conference on Mathematical Methods in Electromagnetic Theory, 118-123, 2008.
doi:10.1109/MMET.2008.4580910
21. Fichtner, N., X. Zhou, and P. Russer, "Investigation of carbon nanotube antennas using thin wire integral equations," Adv. Radio Sci., Vol. 6, 209-211, 2008.
22. Maffucci, A., G. Miano, G. Rubinacci, A. Tamburrino, and F. Villone, "Plasmonic, carbon nanotube and conventional nano-interconnects: A comparison of propagation properties," 12th IEEE Workshop on Signal Propagation on Interconnects, SPI 2008.