Vol. 94
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-30
Lower Frequency Limit of Carbon Nanotube Antenna
By
Progress In Electromagnetics Research, Vol. 94, 419-433, 2009
Abstract
Carbon nanotubes are characterized by slow wave propagation and high characteristic impedance due to the additional kinetic inductive effect. This slow wave property can be used to introduce resonant dipole antennas with dimensions much smaller than traditional half-wavelength dipole in Terahertz band. However, this property has less effect at lower frequency bands. This paper introduces the physical interpretation of this property based on the relation between the resonance frequency and the surface wave propagation constant on a carbon nanotube. This surface wave propagation is found to be characterized by high attenuation coefficient at low frequency bands which limits using carbon nanotube as an antenna structure at these frequencies.
Citation
Ahmed Attiya, "Lower Frequency Limit of Carbon Nanotube Antenna," Progress In Electromagnetics Research, Vol. 94, 419-433, 2009.
doi:10.2528/PIER09062001
References

1. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0

2. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electronic and electromagnetic properties of nanotubes," Phys. Rev. B, Vol., Vol. 57, 9485, 1998.
doi:10.1103/PhysRevB.57.9485

3. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, Vol. 60, 17136 -17149, 1999.
doi:10.1103/PhysRevB.60.17136

4. Miyamoto, Y., A. Rubio, S. G. Louie, and M. L. Cohen, "Self-inductance of chiral conducting nanotubes," Phys. Rev. B, Vol. 60 , 13885, 1999.
doi:10.1103/PhysRevB.60.13885

5. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, PIER 86, 111-134, 2008.

6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antenna," IEEE Trans. Antennas and Propagation, Vol. 53, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865

7. Burke, P. J., "Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 1, 129-144, 2002.
doi:10.1109/TNANO.2002.806823

8. Burke, P. J., "Corrections to Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans Nanotechnology, Vol. 3, 331, 2004.

9. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 2, 55-58, 2003.
doi:10.1109/TNANO.2003.808503

10. Burke, P. J., "Corrections to an RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 3, No. 331, 2004.

11. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part II: A transmission line model," IEEE Workshop on Signal Propagation on Interconnects, 185-188, 2006.
doi:10.1109/SPI.2006.289216

12. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part I: A fluid model and a 3D integral formulation," IEEE Workshop on Signal Propagation on Interconnects, 181-184, 2006.
doi:10.1109/SPI.2006.289215

13. Maffucci, A. and G. Miano, "Electromagnetic and circuital modeling of carbon nanotube interconnects," 2nd Electronics System-integration Technology Conference, 1051-1056, 2006.

14. Miano, G., A. Maffucci, F. Villone, and W. Zamboni, "Frequency-domain modelling of nanoscale electromagnetic devices using a fluid model and an integral formulation," International Conference on Electromagnetics in Advanced Applications, 233-236, 2007.
doi:10.1109/ICEAA.2007.4387280

15. Harrison, C. W., "Monopole with inductive loading," IEEE Trans. on Antennas and Propagation, Vol. 11, 394-400, 1963.
doi:10.1109/TAP.1963.1138059

16. Hanson, G. W., "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," EEE Trans. Antennas and Propagation, Vol. 54, 76-81, 2006.
doi:10.1109/TAP.2005.861550

17. Hanson, G. W., "Radiation efficiency of nanoradius dipole antennas in the microwave and far-infrared regime," IEEE Antennas and Propagation Magazine, Vol. 50, 66-77, 2008.
doi:10.1109/MAP.2008.4563565

18. Burke, P. J., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotube antenna performance," IEEE Trans. Nanotechnology, Vol. 5, 314-334, 2006.
doi:10.1109/TNANO.2006.877430

19. Huang, Y., W.-Y. Yin, and Q. H. Liu, "Performance prediction of carbon nanotube bundle dipole antennas," IEEE Trans. Nanotechnology, Vol. 7, 331-337, 2008.
doi:10.1109/TNANO.2007.915017

20. Slepyan, G. Y., M. V. Shuba, A. M. Nemilentsau, and S. A. Maksimenko, "Electromagnetic theory of nanodimentional antennas for terahertz, infrared and optical regimes," 12th International Conference on Mathematical Methods in Electromagnetic Theory, 118-123, 2008.
doi:10.1109/MMET.2008.4580910

21. Fichtner, N., X. Zhou, and P. Russer, "Investigation of carbon nanotube antennas using thin wire integral equations," Adv. Radio Sci., Vol. 6, 209-211, 2008.

22. Maffucci, A., G. Miano, G. Rubinacci, A. Tamburrino, and F. Villone, "Plasmonic, carbon nanotube and conventional nano-interconnects: A comparison of propagation properties," 12th IEEE Workshop on Signal Propagation on Interconnects, SPI 2008.