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Abstract—Carbon nanotubes are characterized by slow wave
propagation and high characteristic impedance due to the additional
kinetic inductive effect. This slow wave property can be used to
introduce resonant dipole antennas with dimensions much smaller
than traditional half-wavelength dipole in Terahertz band. However,
this property has less effect at lower frequency bands. This paper
introduces the physical interpretation of this property based on
the relation between the resonance frequency and the surface wave
propagation constant on a carbon nanotube. This surface wave
propagation is found to be characterized by high attenuation coefficient
at low frequency bands which limits using carbon nanotube as an
antenna structure at these frequencies.

1. INTRODUCTION

Carbon nanotubes (CNT) were discovered experimentally in early
1990s by Iijima [1]. Since this date these structures have been fertilized
fields of research due to their unique featured physical properties. CNT
can be considered as a rolled graphene sheet. They are classified
to single wall or multi-wall CNTs according to the number of these
rolls. They are also classified according to the axis around which the
graphene sheet is rolled.

On the other hand, the ac conductivity and electromagnetic
wave interaction of the conducting CNTs have also important
features compared with traditional conductors like copper wires of
the same size. Slepyan et al. [2, 3] introduced the earliest study of
electromagnetic wave interaction with CNT. Their study included the
dc and ac conductivity of single wall CNTs and surface wave and
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leaky wave propagation along these nanotubes. On the other hand,
Miyamoto et al. [4] studied the inductive effect specifically due to
the chiral structure of these nanotubes. Instead of effective boundary
condition and surface conductivity, Mikki and Kishk [5] presented a
microscopic model to derive the Green’s function that represents the
interaction of electromagnetic waves with single wall CNT based on the
potential at each atom in its periodical atomic structure. The main
problem of this method is that the resulting formulation is much more
complicated to be included in a simple simulation code.

Hanson [6] presented a detailed comparison between the ac
conductivity of different single wall CNTs and 2D ac conductivity of
copper. From his results it can be concluded that the ac conductivity
of these CNTs are characterized by negative imaginary part compared
with copper. This negative imaginary part corresponds to an inductive
effect. This inductive effect is due to the stored kinetic energy in the
CNT structures. Burke [7, 8] used electron fluid model to introduce
an equivalent circuit model for CNT transmission line section. He
introduced additional kinetic inductance and quantum capacitance
effects that represent the ac conductivity behavior of CNT transmission
line section. The details of deriving these additional circuit parameters
from the ac conductivity of CNTs are discussed in Refs. [9–12]. This
kinetic inductance is found to be much larger than the traditional
magnetostatic inductance of transmission line section. On the other
hand, the quantum capacitance is nearly of the same order of the
electrostatic capacitance of the transmission line section. This property
has two main effects on electromagnetic wave propagation along the
CNT transmission line; slow wave propagation and high characteristic
impedance.

The slow wave propagation along conducting CNTs and the high
conductivity compared with metallic conductors like copper make
these structures competitive candidates for high frequency applications
where the dimensions should be comparable to the propagation
wavelength. This property can be of great importance in reducing the
size of antenna and passive circuits. This is similar to the traditional
technique of adding small coils in the arms of the dipole antenna to
reduce its resonance length [13]. However, the coil in this case is
distributed along all the antenna structure. This advantage was the
motivation for different authors to study the possibility of using these
CNTs as antennas [6, 14–17].

Burke et al. [16] presented a detailed study on CNT dipole antenna
based on simple transmission line approximation. They assumed that
the antenna is simply a flared part of a transmission line section where
the wave travels approximately with the same velocity on it. This
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wave velocity on the CNT transmission line equals nearly the Fermi
velocity in CNT. They mentioned that the wave velocity would be
slightly affected by the flaring since it depends only on the variation
of the capacitance effect which is sensitive to the log of the distance
between the two arms. Thus, based on this assumption, they showed
that a lossless CNT of length 150µm would be resonant at 10 GHz
which corresponds to the half plasmonic wave length at this frequency.
They followed up this assumption to present other properties of CNT
dipole antenna like input impedance, mutual impedance, radiation
resistance, directivity and efficiency. They also presented an integral
equation representation based on the transmission line equivalent
circuit parameters to obtain the exact current distribution on the CNT
instead of approximating it as a sinusoidal standing wave pattern.

On the other hand, Hanson [6] presented an integral equation
based on the macroscopic surface conductivity of the CNT instead of
the equivalent circuit parameters of the CNT transmission line. Similar
formulations are presented by other authors [18, 19].

However, the main problem in using CNT as a TL section or an
antenna structure is the corresponding high characteristic impedance.
To reduce the characteristic impedance of CNT TL, CNT bundles were
introduced [20, 21]. This CNT bundle is a set of parallel single wall
CNT. In Refs. [20, 21] they showed that the slow-wave coefficients
for azimuthally symmetric guided waves increase with the number
of metallic CNTs in the bundle, tending for thick bundles to unity,
which is characteristic of macroscopic metallic wires. Thus, there is a
compromise between reducing the length of the resonant bundle dipole
and reducing the resonant input impedance.

The points which are required to be clarified can be summarized in
two main points; (i) Is CNT bundle suitable to be used as an antenna
in lower Giga Hertz range by just scaling the dimension? And (ii)
what is the real mechanism of wave propagation along the nanotube
bundle in this range? These points are discussed in this paper through
two directions; integral equation representation of CNT bundle and
surface wave propagation along a CNT. By comparing the results of
the integral equation and the surface wave propagation of CNT bundle,
the resonance behavior of CNT bundle and the lower frequency limit of
this resonance are clarified. The present analysis is based on SI units
and harmonic time dependence ejωt.
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2. THEORY

2.1. Basic Parameters of Single Wall Carbon Nanotube

Single wall Carbon can be considered as a rolled graphene sheet. The
lattice of graphene sheet is a honeycomb hexagonal shape. The spacing
between two adjacent carbon atoms in graphene sheet is b = 0.142 nm.
CNTs are defined by the vector that describes the circumference of the
rolled graphene sheet. This vector is simply the vector summation of
integer multiples of the two lattice basis vectors. The dc conductivity
of CNT depends on these integer number multiplications; m and n.
Armchair CNTs of two equal vector indices (m = n) are always
conducting. In this case the radius of the of tube is a = 3mb/2π. This
paper is based only this armchair configurations. Other configurations
like zigzag can also be conductors at specific case or semiconductors in
other case.

The conductivity of CNT depends mainly on it chirality. This
conductivity is divided into two parts; intraband and interband
conductivities [22]. Interband transitions have more significance in
optical frequencies. Thus, the present analysis is mainly depending
on intraband conductivity of an armchair CNT which can be
approximated for small radius armchair CNT where m ≤ 50 as [6]:

σcn
zz ≈ −j

2e2vF

π2~a (ω − jv)
(1)

where vF ≈ 9.71×105 m/s is the Fermi velocity of CNT; v = τ−1 is the
inverse of the electron relaxation time in CNT lattice τ ≈ 3 ps; ω is the
operating frequency; e is the electron charge; ~ is the reduced Planck’s
constant. For a CNT bundle composed of N identical tubes arranged
as a cylindrical shell of radius R as shown in Fig. 1, the effective axial
surface conductivity of this shell can be approximated by [21]:

σb
zz ≈

Nσcn
zza

R
(2)

2.2. Integral Equation Representation of Carbon Nanotube
Bundle

The integral equation representation of electromagnetic wave interac-
tion with CNT was first discussed by Hanson [6]. Different authors
have followed up his analysis with slight modification to include sec-
ond order effects like the curvature of the CNT surface. The basic idea
of integral equation representation for CNT is based on using Hallén’s
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integral equation with adding the effect of surface conductivity as fol-
lows:

L∫

−L


e−jko

√
(z−z′)2+R2

√
(z − z′)2 + R2

+
1

ZoσR
e−jko|z−z′|


I(z′)dz′

= C cos koz − j
4πωεo

2ko
sin ko|z − z0| (3)

where R is the radius of the dipole (R = a for single nanotube), and σ
is the effective surface conductivity of the dipole, z0 is the location of
the feeding point, C is a constant that would be determined to satisfy
the current vanishing at the edges of the dipole, and L is the half
length of the dipole. The main difference in this integral equation lies
in the second term of the integrand in the left hand side. This integral
equation can be solved numerically by using method of moments to find
out the current distribution and subsequently the input impedance,
radiation pattern, radiation efficiency and other antenna parameters.
Details of solving this integral equation numerically by using method
of moments can be found in [23].

2.3. Surface Wave on Carbon Nanotube

Another approach for studying electromagnetic wave interaction with
CNT (single or bundle) is to study guiding wave properties of this
structure [24]. Since the effective conductivity lies only on the axial
direction, the surface wave component would be mainly TM wave.
Thus, the total field can be represented in terms of the axial TM
Hertzian potential Πe as follows:

~E = ∇ (∇ ·Πe) + k2
0Πe (4a)

~H = jωεo∇×Πe (4b)

where TM Hertzian potential is determined by solving the wave
equation

∇2Πe + k2
0Πe = 0 (5)

For cylindrical configuration as in the case of CNT, the general solution
of wave equation is Bessel function. The field inside the cylinder
is finite in the range 0 ≤ ρ ≤ R. Thus, the field in this region is
represented by Bessel function of first kind. On the other hand, the
field outside the cylinder should be finite at ρ = R and is exponentially
decaying as ρ > R. Thus, the field in this region is represented by
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Hankel function of second kind. Hence, the general solution of the TM
Hertzian potential in CNT (single or bundle) can be represented as:

Πe = A~az

{
Jn(κρ)H(2)

n (κR)
Jn(κR)H(2)

n (κρ)

}
e−jγze−jnφ ρ ≤ R

ρ ≥ R
(6)

By using this Hertzian potential in Eq. (4) and applying the boundary
condition

Jz = σzzEz(R) = − lim
δ→0

[Hφ(R + δ)−Hφ(R− δ)] (7)

one can obtain the dispersion equation for surface wave propagation
on a CNT as follows:

(
κ

ko

)2

Jn(κR)H2
n(κR) =

2
πσzzZokoR

where Im(κ) ≤ 0 (8)

The longitudinal propagation constant is given by:

γ =
√

k2
o − κ2 where Im(γ) ≤ 0 (9)

It would be useful here to study the limit of the above dispersion
equation for the zero order mode at small argument limit. In this
case the Bessel function combination of the right hand side can be
approximated as:

J0(κR)H(2)
0 (κR) ≈

(
1− j

2
π

[ln (κR/2) + 0.577215)]
)

(10)

Unlike Bessel function, the logarithmic function in the right hand
side of Eq. (10) can be represented by a slowly convergent series for
small argument. However, for Giga Hertz frequency band, the average
value of this logarithmic function is nearly around minus ten. Thus,
an approximate value of the zero order mode complex surface wave
propagation coefficient along a CNT is given by:

γ ≈ k0

√
1− 1

σzzZok0R (π/2 + j10)
(11)

It can be noted that, by increasing the longitudinal conductivity of the
tube, the surface wave propagation constant approaches the free space
propagation constant.
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2.4. Quasi TEM Carbon Nanotube Transmission Line

To verify the difference between feeding CNT transmission line and
wave propagation along the arms of nanotube antenna, it is required to
study the quasi TEM wave propagation along CNT transmission line.
CNT transmission line above a PEC ground plane was studied by using
transmission line equation including the effect of the conductivity of
the CNT [9, 10]. This analysis is based on an equivalent RLC circuit
per unit length for this transmission line configuration. This equivalent
circuit can be used directly to obtain the complex propagation constant
of CNT transmission line above a PEC ground plane as follows:

jγ = jβ − α =
√

jωC (jωLeff + Reff ) (12a)

where

Leff =
L + Lk

1 + C/CQ
, (12b)

Reff =
RQ

1 + C/Ck
, (12c)

here L and C represent the magnetostatic inductance and electrostatic
capacitance per unit length respectively. For a cylindrical CNT bundle
transmission line above a PEC ground plane, these parameters can be
obtained analytically as follows [25]:

L =
µ0

2π
cosh−1

(
t

R

)
(13a)

C =
2πε0

cosh−1
(

t
R

) (13b)

where t and R are the height of the CNT bundle transmission line above
the ground plane and the radius of the CNT bundle respectively. On
the other hand, Lk, CQ and RQ correspond to kinetic inductance,
quantum capacitance and resistance per unit length respectively.
These parameters are given by [7–10]:

Lk =
h

8Ne2vf
(14a)

CQ = N
8e2

hvf
(14b)

RQ =
h

8Ne2
(14c)

where N is the number of tubes in the bundle; vf is the Fermi velocity
of CNT structure; h is Planck’s constant; e is the electron charge.
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3. RESULTS AND DISCUSSIONS

In this section different results of CNT bundles at different frequency
ranges are presented to study the possibility of scaling these antenna
configurations from Terahertz frequency band to Giga Hertz frequency
band. The present results are based on armchair CNT of configuration
m = n = 40. For this configuration, the radius of the CNT is
a = 2.7 nm. For a closely backed bundle composed of N CNT arranged
in a single circular shell as shown in Fig. 1, the radius of the bundle is
R = 2Na/π.

Figure 1. Geometry of a Cylindrical CNT Bundle composed of one
circular shell.

Figure 2 shows the input impedance of a dipole of a CNT bundle
for different values of N . The length of the dipole is assumed to be
30µm. It can be noted that the first resonance of this configuration
that corresponds to a half-guided-wave length dipole for the case N = 8
occurs nearly at 280 GHz where the resonant impedance is nearly
2100Ohms. By comparing this length with free space half-wave at
this frequency it can be shown that this CNT antenna has a reduction
scale factor of nearly 0.056 compared with traditional half-wave length
dipole. Increasing the number of nanotubes in the bundle decreases the
total surface impedance of the dipole. This has two effects, increasing
the resonant frequency for a specific length and decreasing the resonant
impedance as shown in the case where N is increased to twenty. In
this case the first resonance frequency is 404 GHz and the resonance
impedance is 840 Ohms. In this case the scale reduction factor is nearly
0.081. For a hundred nanotube bundle of the same length, the resonant
frequency would be 740GHz and the resonance impedance would be
174Ohms. In this case the scale reduction factor is nearly 0.15.

By scaling these antenna configuration ten times such that the
length of the dipole would be 300µm, the results shown in Fig. 3 are
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Figure 2. Input impedance of a
bundle dipoles of L = 30µm. The
bundle is composed of armchair
CNTs with lattice parameters
m = n = 40. Numbers of
nanotubes in the bundles are N =
8, N = 20 and N = 100.
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Figure 3. Input impedance of a
bundle dipole of L = 300µm. The
bundle is composed of armchair
CNTs with lattice parameters
m = n = 40. Number of
nanotubes in the bundle is (a)
N = 8, (b) N = 20 and (c)
N = 100.

obtained. This results shows that there is no resonance in this case
although the general behavior of the impedance is nearly the same as
in Fig. 2 with frequency scaling of one tenth. This means that simple
scaling of CNT antenna would not introduce the same properties in
another frequency band. It should be noted that the radius of the
dipole does not play a critical role in this case since it is very small
compared with the operating frequency in all cases. It can also be
noted that the input impedance of antenna at 10–100GHz band is
always capacitive load. This means that the advantage of antenna size
reduction that is obtained by using CNT in 100–1000GHz band cannot
be directly transformed to lower frequency range by simple scaling of
the antenna structure.

By introducing another scaling factor of ten such that the length of
the dipole would be 3000µm, the input impedances of dipole antenna
configurations for the two cases where N = 8 and 100 are obtained
is shown in Fig. 4. It can be noted that the behavior of the input
impedance of these antenna configurations in the frequency range from
1 to 10 GHz is completely different from those of Fig. 2 with taking
into consideration the scaling factor. In this case the real part of
impedance is monotonically decreasing with frequency increase and
the reactive part is always capacitive and it is monotonically increasing
with frequency increase too.
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Figure 4. Input impedance
of a bundle dipole of L =
3000µm. The bundle is composed
of armchair CNTs with lattice
parameters m = n = 40. Number
of nanotubes in the bundle is (a)
N = 8, (b) N = 100.
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Figure 5. Wave velocity com-
pared with free space wave prop-
agation of a quasi-TEM TL CNT
bundle above a PEC ground plane
as a function of N . The separa-
tion between the bundle and the
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According to the simple theory of center-fed dipole, it can be
approximated as a flared transmission line section with open circuit
termination [25]. This open circuit termination introduces a standing
wave pattern on this transmission line section. For the case of a
perfect conducting transmission line in free space, the propagation
constant on the transmission line and the flared section would be the
free space propagation constant. The resonance of the dipole occurs
when the standing wave pattern on the arms of the dipole introduces
peak current at the feeding point of the dipole. The first current peak
occurs when the length of the flared section equals nearly one-fourth
of the propagation wave length which means that the total dipole
length would be half-wave length. The main misleading part in this
interpretation is that the wave propagation on the transmission line
and the flared section of perfect conducting transmission line are the
same in free space.

Burke et al. [16] introduced quantitative theory of nanotube
antenna. In their method, they assumed that the electromagnetic wave
would propagate with the same propagation constant at the feeding
nanotube transmission line. Fig. 5 shows the calculated v/c for a
CNT bundle TL above a ground plane as a function of the number
of nanotubes in the bundle. The separation between the bundle and
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the ground plane is assumed to be three different values; t = 5a, 10a
and 20a where a is the radius of a single nanotube. For the case where
t = 10a, the propagation wave velocity compared with free space wave
velocity in this case for bundles of N = 8, 20 and 100 would be 0.03,
0.0378 and 0.0576 respectively. By comparing these wave velocities
with the corresponding scale reduction factors for the dipole of Fig. 2,
it can be noted that, this quasi-TEM wave velocity is not related to the
resonant length of the CNT bundle dipole antenna which is calculated
by full wave analysis. It can also be noted from Fig. 5 that changing
the separation between the CNT bundle and the ground plane would
not introduce a significant effect on the order of these values for the
CNT bundle TL. Thus, it can be concluded that the mechanism of wave
propagation on the arms of the dipole is different from the propagation
on the feeding transmission line in this case.

The previous result was the motivation here to look for another
explanation for the mechanism of wave propagation along the dipole
arms and also to introduce a physical interpretation for the results
shown in Figs. 2–4. The appropriate mechanism in this case is the
surface wave propagation on the dipole arms. It should be noted that
surface wave propagation velocity on a perfect conducting tube in free
space is the same as free space propagation velocity as it is shown in
Eq. (11). Thus, the surface wave interpretation does not conflict with
the basic theory of perfect conducting dipole in free space [25]. Fig. 6
shows the surface wave propagation on the same bundle configurations.
It can be noted that the surface wave velocity compared with the free
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space wave velocity and the complex propagation constant compared
with the free space propagation constant on these CNT bundles. The
surface wave velocity of an eight-carbon-nanotube bundle at 470 GHz is
0.056 which is the same reduction factor of the dipole length for N = 8
in Fig. 2. Similarly, the same relations between reduction factors of
the resonant dipole length for N = 20 and N = 100 shown in Fig. 2
and the corresponding surface wave velocity shown in Fig. 5(a) are
obtained. These results show the quite relation between the resonant
dipole length and the surface wave velocity on its arms. On the
other hand, by studying the surface wave complex wave propagation
constant, it can be noted that the attenuation coefficient increases by
decreasing the operating frequency as shown in Fig. 6(b). The effect of
this attenuation coefficient is negligible in the frequency range from 100
to 1000 GHz. Thus, the main behavior of the input impedance of the
dipole antenna is nearly the same of traditional dipole antenna with
taking into account scaling reduction factor due to the slow surface
wave velocity. On the other hand, this attenuation coefficient has
a moderate effect in the frequency band from 10 to 100 GHz. The
resonance mechanism occurs when the incident wave at the feeding
point adds constructively with the reflected wave from the dipole ends.
However, in the band from 10 to 100 GHz, the wave propagating on
the arms of the dipole is attenuated. Thus, the reflected wave does not
add completely at the feeding point which means the inductive effect
due to the delayed reflected signal does not compensate completely
the capacitive effect of the dipole arms. This explains the capacitive
behavior of CNT dipoles in Fig. 4. This behavior becomes clearer at
lower frequency band from 1GHz to 10 GHz where the attenuation
coefficient is more increased. In this case, the wave propagating on
the arms of the dipole is highly attenuated, such that the active part
of the dipole is much smaller than the physical length of the dipole
itself. Thus, the dipole would always be a short dipole in this case
and it could not be resonant in any case. This result show that the
advantage of size reduction combined with surface wave propagation
can be used only in high frequency bands above 100 GHz.

4. CONCLUSION

In this paper, the relation between the resonance mechanism of CNT
bundle antenna and the surface wave propagation on this bundle
structure is discussed. It is also shown that the complex surface wave
propagation has a significant attenuation coefficient at lower frequency
band. This attenuation coefficient introduces highly damping effect
which reduces the active part of the dipole length. Thus, dipole would
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be always below resonance in this case and its input impedance would
be always capacitive. According to the results of complex surface wave
propagation on CNT bundle it can be concluded that to obtain both
resonance and size reduction, the lowest frequency that can be suitable
for a CNT antenna is nearly 100GHz. It is also shown that there is
no relation between the resonant length and the approximate RLC
representation of parallel wire CNT transmission line.
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