Vol. 94
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-15
Layer-Mode Transparent Boundary Condition for the Hybrid FD-FD Method
By
Progress In Electromagnetics Research, Vol. 94, 175-195, 2009
Abstract
We combine the analytic eigen mode expansion method with the finite-difference, frequency-domain (FD-FD) method to study two-dimensional (2-D) optical waveguide devices for both TE and TM polarizations. For this we develop a layer-mode based transparent boundary condition (LM-TBC) to assist launching of an arbitrary incident wave field and to direct the reflected and the transmitted scattered wave fields back and forward to the analytical regions. LM-TBC is capable of transmitting all modes including guiding modes, cladding modes and even evanescent waves leaving the FD domain. Both TE and TM results are compared and verified with exact free space Green's function and a semi-analytical solution.
Citation
Hung-Wen Chang, Wei-Chi Cheng, and Shih-Min Lu, "Layer-Mode Transparent Boundary Condition for the Hybrid FD-FD Method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606
References

1. Lin, C. F., Optical Components for Communications , Kluwer Academic Publishing, 2004.

2. Pavesi, L. and G. Guillot, Optical Interconnects, the Silicon Approach, Springer-Verlag, 2006.
doi:10.1007/978-3-540-28912-8

3. Ishimaru, A., Electromagnetic Propagation, Radiation, and Scattering, Prentice Hall, Englewood Clifffs, 1991.

4. Chew, W.-C., Waves and Fields in Inhomogeneous Media, Van Norstrand Reinhold, 1990.

5. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.

6. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwell's equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, PIER 59, 85-100, 2006.

7. Shao, W., S.-J. Lai, and T.-Z. Huang, "Compact 2-D full-wave order-marching time-domain method with a memory-reduced technique," Progress In Electromagnetics Research Letters, Vol. 6, 157-164, 2009.
doi:10.2528/PIERL08111811

8. Yamauchi, J., Propagating Beam Analysis of Optical Waveguides, Research Studies Press, 2003.

9. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

10. Taflove, A. and M. Brodwin, "Numerical solution of steady-state electromagnetic scattering problem using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory and Techniques, Vol. 23, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640

11. Taflove, A. and M. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye," IEEE Trans. Microwave Theory and Techniques, Vol. 23, 888-896, 1975.
doi:10.1109/TMTT.1975.1128708

12. Holland, R., "Threde: A free-field EMP coupling and scattering code," IEEE Trans. Nuclear Science, Vol. 24, 2416-2421, 1977.
doi:10.1109/TNS.1977.4329229

13. Kunz, K. S. and K. M. Lee, "A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment 1: The method and its implementation," IEEE Trans. Electromagnetic Compatibility, Vol. 20, 328-333, 1978.
doi:10.1109/TEMC.1978.303726

14. Huang, Y. C., "Study of absorbing boundary conditions for finite difference time domain simulation of wave equations,", Master Thesis, Graduate Institute of Communication Engineering, National Taiwan University, June 2003.

15. Mur, G., "Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic field equation," IEEE Trans. Electromagnetic Compat. EMC-23, Vol. 4, 377-382, 1981.
doi:10.1109/TEMC.1981.303970

16. Lindman, E. L., "Free-space boundary conditions for the time dependent wave equation," J. Comp. Phys., Vol. 18, 66-78, 1975.
doi:10.1016/0021-9991(75)90102-3

17. Liao, Z. P., H. Wong, B. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica (Series A), Vol. 27, 1063-1076, 1984.

18. Grote, M. and J. Keller, "Nonreflecting boundary conditions for time dependent scattering," J. Comp. Phys., Vol. 127, 52-81, 1996.
doi:10.1006/jcph.1996.0157

19. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Math Comp., Vol. 31, 629-651, 1971.
doi:10.2307/2005997

20. Engquist, B. and A. Majda, "Radiation boundary conditions for acoustic and elastic wave calculations," J. Comp. Phys., Vol. 127, 52-81, 1996.
doi:10.1006/jcph.1996.0157

21. Hadley, G. R., "Transparent boundary conditions for the beam propagation method," IEEE J. Quantum Electron, Vol. 28, 363-370, 1992.
doi:10.1109/3.119536

22. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

23. Berenger, J. P., "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas and Propagation, Vol. 44, No. 1, 110-117, 1996.
doi:10.1109/8.477535

24. Zheng, K., W.-Y. Tam, D.-B. Ge, and J.-D. Xu, "Uniaxial PML absorbing boundary condition for truncating the boundary of dng metamaterials," Progress In Electromagnetics Research Letters, Vol. 8, 125-134, 2009.
doi:10.2528/PIERL09030901

25. Juntunen, J. S., "Zero reflection coefficient in discretized PML," IEEE Microwave and Wireless Compt. Letter, Vol. 11, No. 4, 2001.

26. Johnson, S. G., "Notes on perfectly matched layers (PMLs),", MIT 18.369 and 18.336 course note, July 2008.

27. Hwang, J.-N., "A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer," Trans. on MTT., Vol. 53, 653-659, Feb. 2005.
doi:10.1109/TMTT.2004.840569

28. Robertson, M. J., S. Ritchie, and P. Dayan, "Semiconductor waveguides: Analysis of optical propagation in single rib structures and directional couplers," Inst. Elec. Eng. Proc.-J., Vol. 132, 336-342, 1985.

29. Vassallo, C., "Improvement of finite difference methods for step-index optical waveguides," Inst. Elec. Eng. Proc.-J., Vol. 139, 137-142, 1992.

30. Hua, Y., Q. Z. Liu, Y. L. Zou, and L. Sun, "A hybrid FE-BI method for EM scattering from dielectric bodies partiallycovered by conductors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 423-430, 2008.
doi:10.1163/156939308784160802

31. Wang, S.-M., "Development of large-scale FDFD method for passive optical devices,", Master Thesis (in Chinese), Institute of Elctro-Optical Engineering, National Sun Yat-sen University, June 2005.

32. Chang, H. W. and W. C. Cheng, "Analysis of dielectric waveguide termination with tilted facets by analytic continuity method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1653-1662, 2007.

33. Cheng, W.-C. and H.-W. Chang, "Comparison of PML with layer-mode based TBC for FD-FD method in a layered medium," International Conference on Optics and Photonics in Taiwan, P1-170, Dec. 2008.

34. Chiang, Y. C., Y. Chiou, and H. C. Chang, "Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles," J. of Lightwave Technology, Vol. 20, No. 8, 1609-1618, August 2002.
doi:10.1109/JLT.2002.800292

35. Lavranos, C. S. and G. Kyriacou, "Eigenvalue analysis of curved waveguides employing an orthogonal curvilinear frequency domain finite difference method," IEEE Microwave Theory and Techniques, Vol. 57, 594-611, March 2009.
doi:10.1109/TMTT.2009.2013314

36. Magnanini, R. and F. Santosa, "Wave propagation in a 2-D optical waveguide," SIAM J. Appl. Math., Vol. 61, No. 4, 1237-1252, 2000.

37. Chang, H.-W. and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Mathematical and numerical formulations," Progress In Electromagnetics Research, PIER 78, 329-347, 2008.