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Abstract—We combine the analytic eigen mode expansion method
with the finite-difference, frequency-domain (FD-FD) method to study
two-dimensional (2-D) optical waveguide devices for both TE and TM
polarizations. For this we develop a layer-mode based transparent
boundary condition (LM-TBC) to assist launching of an arbitrary
incident wave field and to direct the reflected and the transmitted
scattered wave fields back and forward to the analytical regions. LM-
TBC is capable of transmitting all modes including guiding modes,
cladding modes and even evanescent waves leaving the FD domain.
Both TE and TM results are compared and verified with exact free
space Green’s function and a semi-analytical solution.

1. INTRODUCTION

Passive dielectric waveguides devices are important building blocks
in modern optical communication systems [1, 2]. For 2-D dielectric
waveguide problems are divided into mutually independent TE and
TM cases which can be solved as scalar wave problems [3, 4]. For
complex optical devices, full wave methods such as the finite-difference
time-domain methods (FD-TD) [5–7] are often used. For very large
adiabatic waveguide devices the beam propagation method (BPM) and
its variations [8] are used for studying field evolutions and for mode
profile determination. BPMs apply a one-way approximation to the
Maxwell’s equations making it possible to advance the field solutions
plane by plane along the propagation axis. This tremendous saving
in computational resources makes BPM the only available option for
modeling large complex 3D waveguide devices.
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In 1966 Professor Yee published his now famous 3D FD-TD
algorithm [9]. It was until 1975 when workstations became popular
and powerful enough that Taflove and Brodwin, based on Yee’s time
stepping algorithm, published a few 2-D and 3D microwave simulation
papers [10, 11]. Holland, Kunz and Lee applied Yee’s method and
published several EMP paper in 1977 [12, 13]. Since then, FD-TD had
gained popularity as one viable method for many EM problems.

To keep the FD-TD domain from becoming too large, various ab-
sorbing/transparent boundary conditions (ABC/TBC) were developed
to allow scattered wave fields to leave the FD-TD region. There are
basically two types of ABC/TBC [14]. The first group is based on the
one-way wave equation such as Mur ABC [15]. The method is simple
but is only effective for waves with small incident angles. Lindman [16]
extended it to wider incident angles using a much more complex formu-
lae. Liao, et al. [17] extended the TBC to handle waves in horizontally
stratified media with multiple wave types. Several ABC modifications
and extensions were also published for acoustical and seismic appli-
cations. Examples include Grote’s nonreflecting BC (NBC) [18], En-
gquist’s method [19, 20]. In 1992 Hadley published a first BPM TBC
paper [21] based on a first-order linear phase extrapolation method.

The second ABC/TBC group is based on absorbing materials.
Berenger published two papers on perfectly matched layer, PML [22–
24] which became very popular for ease of use and for its effectiveness.
PML methods require that part of FD region near the boundaries
to be padded with electric and magnetic absorbing materials. The
impedance of PML material is chosen to be the same as the background
material (for the normally incident waves) to reduce the reflection.
However, waves coming in at near grazing angles will be reflected
due to larger mismatch in the wave impedance. By optimizing
PML parameters zero reflection can be obtained for isolated pairs of
frequency and angle of incidence [25].

Both types of ABC/TBC methods are designed for absorbing
waves in homogeneous media. The performance of the FD-TD
ABC methods will be degraded for optical waveguide devices with
horizontally stratified media with discrete material indices [26]. To
overcome this difficulty, there are currently ongoing research efforts
on applying PML/ABC for layered media [27]. In addition, the
characteristic of an optical waveguide device is completely determined
by the dispersion relation at the optical carrier frequency. Frequency-
domain analysis allows us to study waveguide physics easier than the
time-domain method. For example, to obtain the group velocity and
group delay of a given waveguide device, we need a very high frequency
resolution near the carrier frequency. High frequency resolution from
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FD-TD simulation requires a very long run time. Since late arriving
signals are bouncing between ABC regions, a high-quality long run
time FD-TD calculation requires a very good ABC/TBC especially in
a layered dielectric structure. Thus, we seek for a good ABC/TBC
method for FD-FD method, which has recently become quite popular
for modeling some complex optical device [28, 29].

The disadvantage of the FD-FD method is that we need to solve
for a large linear equation of up to a few million variables. As far as we
know there exists no robust and fast iterative method, such as the ADI
method for the Laplace equation, for solving the discretized Helmholtz
equation. In fact, FD-TD can be considered as a special iterative
method for solving FD-FD matrix equation with simple boundary
conditions. In general FD-FD method is more accurate than the FD-
TD method, since there is no approximation of the time-derivative
operator. The lack of robust iterative discretized Helmholtz solver
is the limiting factor for all FD-FD applications. As a result, all
practical FD-FD simulations are 2-D. And it should be treated as the
supplemental to the FD-TD method.

To take the advantages of analytical methods in the frequency
domain, we combine FD-FD method, which is good for complex
structures, with eigen mode expansion techniques, which are better
suited for the input and output regions made of a waveguide structure.
The hybrid approaches possess the strengths and efficiency of each
numerical technique [30]. To connect the FD-FD region with the
two analytical regions, we developed a layer-mode based transparent
boundary condition to assist launching of an arbitrary incident wave
field, and in the same time, to direct the reflected and the transmitted
scattered wave fields back to the analytical regions. The initial work
was published first by author’s student as a master thesis [31] and later
on, as an application paper [32]. Part of the material in this paper
was explained in a conference paper [33] where we did a comparison
with the FD-FD using PML as the transparent boundary. LM-TBC is
based on one-way Helmholtz equation and thus requires no additional
padding regions like the PML. It is designed for transmitting multiple
outgoing waves in a multi-layer medium while simultaneously allows
an arbitrary incident field to enter the FD region.

2. THEORETICAL FORMULATION FOR LM-TBC

2.1. The Hybrid FD-FD Method

Figure 1 illustrates the application of the hybrid FD-FD to the study
of a quasi-adiabatic tapered waveguide device that connects a 7µm-
thick input waveguide to 3µm-thick output waveguide. This tapered
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waveguide device operates at a wavelength λ = 1.3µm has a glass
core (index = 1.5) surrounded in the air (cladding index = 1). The
problem domain is horizontally divided into three regions. Region I
and III are the input and output region made of a horizontal slab
waveguide. The two waveguide are connected by a linearly tapered
waveguide in Region II. The core-cladding boundary is indicated by
the blue lines.

Optical waveguide designers are interested in designing a compact
taper structure to ensure a smooth transition between the fundamental
input waveguide mode and the fundamental output waveguide mode.
Power loss due to radiation and higher-order mode conversion should
be kept to a minimum. We see clearly from our hybrid FD-FD
simulation that this tapered waveguide with a 15◦ taper angle converts
most the input energy into the output waveguide but also excites quite
a lot higher order mode power.

Note that field in Regions I and III is computed analytically
while field in Region II is computed by solving the FD-FD matrix
equation. It is known that tangential electric field component and it
normal derivative are continuous everywhere in a piece-wise constant
dielectric waveguide device. Careful inspection of the field component
Ey(x, z) of Figure 1 reveals a continuous and smooth transition across
core-cladding interfaces and over the two computational boundaries.
There are no noticeable numerical artifacts. Our proposed LM-TBC
has successfully launched the incident field into the FD-FD region and
transmitted multiple waveguide mode fields to the exit waveguide.

For simplicity we assume that a general 2D waveguide device
is embedded in a parallel-plate structure. It is horizontally divided
into three regions with the FD-FD region sandwiched between two
analytical regions. For this hybrid FD-FD method to work, the multi-
layer structure in the input and the output region must be aligned
with the z-axis. To understand how we combine the three regions into
one self-consistent FD-FD formulation let us refer to Figure 2 where
we show the layout of FD-FD grids. The unknowns are the FD-FD
variables in Region II. The center of the coordinate (0, 0) is assumed
to located at the lower left corner of the FD-FD region. The central
field component is Ey(x, z) for TE polarization and Hy(x, z) for TM.
In FD region the field uII(x, z) is uniformly sampled into a rectangular
array of discrete points {ui,j} , where ui,j = uII(xi, zj). We shall group
them into M column vectors each with a length N so that

uj =




u1,j
...

uN,j


 , j = 1, . . . , M, (1a)
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where

ui,j = u(xi, zj), xi = (i− 1/2)∆x, zj = (j − 1)∆z. (1b)

Note that u1 vector is chosen to be on the interface between
Region I and Region II at z = 0. Similarly uM vector is chosen to
be on the interface between Region II and Region III at z = Lz.

The field in Region I, the input analytical region, is made of the
incident wave and the reflected waves reflected off the FD-FD region
as

uI(x, z) = φI
1
(x)e−jβI

1z +
N∑

n=1

r′nφI
n
(x)ejβI

nz, z ≤ 0 (2)

where φI
n(x) and βI

n is the nth eigenmode and corresponding
propagation constant of the input waveguide, and r′n is the nth
reflection coefficient. The incident wave is immediately combined with
a reflected wave to form a standing wave so that the net contribution
of the “incident” field at the Region I–II interface is zero. Thus we
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Figure 1. Illustration of the hybrid FD-FD method applied to a quasi-
adiabatic tapered waveguide device. The field Ey(x, z) is excited by A
TE-polarized fundamental mode incident wave. This ideal 2-D device
is made of a glass core with an air cladding.
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have

uI(x, z) = −2jφI
1
(x) sin(βI

1z) +
N∑

n=1
rnφI

n
(x)ejβI

nz, z ≤ 0

r′n =
{

rn − 1, n = 1
rn, n 6= 1 .

(3)

Note that rn is the new nth reflection coefficient. The field in
Region III, the output analytical region, is made of the transmitted
waves scattered off the FD-FD region as

uIII(x, z) =
N∑

n=1

tnφIII
n

(x)e−jβIII
n (z−Lz). z > Lz (4)

Here φIII
n (x) and βIII

n is the nth eigenmode and corresponding
propagation constant of the exit waveguide while tn is the nth
transmission coefficient. For a parallel-plate waveguide filled with a
homogeneous dielectric material, the eigenmodes {φn(x)} are simple
sinusoidal functions. The normalized eigenfunction of a TE-polarized

Figure 2. The Layout of the grid points in the FD-FD region shows
a total of N × M unknowns in the Lz by Lx domain. The first and
the last column of grid vectors are auxiliary variables located in the
analytical regions.
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field bounded by a pair perfectly electric conducting walls (PECWs)
is given by

φn(x) =
√

2
Lx

sin
nπx

Lx
, βn =

√
k2 −

(
nπ

Lx

)2

, n = 1, . . . , N (5)

The normalized eigenfunction of a TE-polarized field bounded by a
pair perfectly magnetic conducting walls (PMCWs) is given by

φn(x) =
√

εn

Lx
cos

nπx

Lx
, εn =

{
1, n = 0
2, n ≥ 1 ,

βn =

√
k2 −

(nπ

Lx

)2
, n = 0, . . . , N − 1

(6)

Eigenmodes of other more complex cases can be obtained by
numerically solving for the mode characteristic functions [3].

2.2. FD Approximation of Helmholtz Equation

The Ey(x, z) component of the TE case satisfies the following 2-D
Helmholtz equation:

∂2Ey

∂x2
+

∂2Ey

∂z2
+ n2(x, z)k2

0Ey = 0. (7)

Using superscripts e, h for polarization and subscripts c, u, d, l, r
to denote relative spatial relation, i.e., center, up, down, left and
right, we then apply the second-order accurate FD approximation to
the 2-D Helmholtz equation for a field point uc. This leads to the
five-point TE FD-FD formulae connecting the four neighboring points
uu, ud, ul, ur.

ce
uuu + ce

dud + ce
l ul + ce

rur + ce
cuc = 0,

ce
u = ce

d =
1

∆x2
, ce

l = ce
r =

1
∆z2

,

ce
c = n2k2

0 − (ce
u + ce

d + ce
l + ce

r) .

(8a)

If the field point uc is located near by a material interface (as depicted
by Figure 3), we must choose n2 as some “average” of n2(x, z) around
the reference field point uc. It is chosen to be the integration over
rectangular box centered at the particular field point given below:

n2 ∆=
1

∆x∆z

z+∆z/2∫

z−∆z/2

x+∆x/2∫

x−∆x/2

n2(x, z) dx dz. (8b)
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For the TM case, the Hy(x, z) component satisfies the following 2-D
Helmholtz equation:

∂

∂x

[
1

n2(x, z)
∂

∂x
Hy

]
+

∂

∂z

[
1

n2(x, z)
∂

∂z
Hy

]
+ k2

0Hy(x, z) = 0. (9)

To derive TM FD coefficients near a material interface, we must
take extra cares to ensure the continuity of tangential magnetic field
and continuity of tangential electric field Et(x, z) which is related to
Hy(x, z) by

Et(x, y) =
1

n2(x, z)
∂

∂n
Hy(x, y). (10)

Some papers choose a local coordinate system consistent with the
material interface [34, 35]. Local FD variables and FD coefficients are
derived and used. They are related back to the global variables by
interpolation. Such methods are suitable for material with large index
contrasts. However, they produce complex anisotropic coefficients for
both TE and TM cases, which make the coding very difficult. We
propose to use a similar averaging scheme like the TE case for the
TM coefficients. Consider the first term in Equation (9), using central
difference approximation we have

∂

∂x

[
1

n2(x, z)
∂

∂x
Hy

]
≈ 1

∆x

[
A

n2(x+∆x/2, z)
− B

n2(x−∆x/2, z)

]

A=
∂uc

∂x

∣∣∣∣
x=x+∆x/2

≈ uu − uc

∆x
, B=

∂uc

∂x

∣∣∣∣
x=x−∆x/2

≈ uc − ud

∆x
.

(11)

∆x

ul

∆z

uu

uc ur

ud

Figure 3. FD-FD TE grid points near a material interface.
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Applying similar operation to the second term of Equation (9) we will
obtain the following FD-FD coefficients for TM case:

1
n2

u

uu

∆x2
+

1
n2

d

ud

∆x2
+

1
n2

l

ul

∆z2
+

1
n2

r

ur

∆z2

+
(

k2
0 −

[
1
n2

u

+
1
n2

d

]
1

∆x2
−

[
1
n2

l

+
1
n2

r

]
1

∆z2

)
uc = 0,

ch
uuu + ch

dud + ch
l ul + ch

rur + ch
c uc = 0,

ch
u =

1
n2

u

1
∆x2

, ch
d =

1
n2

d

1
∆x2

, ch
l =

1
n2

l

1
∆z2

, ch
r =

1
n2

r

1
∆z2

,

ch
c = k2

0 −
(
ch
u + ch

d + ch
l + ch

r

)
.

(12a)

Instead of using just one average as in the TE case, TM cases have
four different averages for the up, down, left and right TM coefficients.
The central coefficient ch

c contains the term ch
u + ch

d + ch
l + ch

r which
is the sum of four neighboring coefficients. In addition, instead of the
squared index as in the TE case, TM-integration is performed over the
inverse of squared index given below:

1
n2

∆=
1

∆x∆z

z+∆z/2∫

z−∆z/2

x+∆x/2∫

x−∆x/2

1
n2(x, z)

dx dz. (12b)

The integration domain is a rectangular box shifted half a grid up,
down, left, right according to the subscript of the coefficient. Figure 4
further illustrates the four centers of integration in dotted circles.

The material-averaging formula for our FD-FD coefficients should
reduce the well known “stair case effect” of plain FD methods. The
detail error analysis on Equations (8a), (8b), (12a) and (12b) will be
investigated in the near future.

2.3. Derivation of LM-TBC

So far we have derived FD-FD equation for all interior points in
Region II. Points belong to u1 and uM vectors are shared between
the FD-FD region and the analytical regions. FD points on u1 are
coupled to analytical points on u0. Also uM vector is coupled to uM+1

vector. The fundamental idea of LM-TBC is that we can express, using
the layer modes in each analytical region, u0 vector in term of u1 and
uM+1 vectors in term of uM via a full matrix.
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Refer to Figure 2 we know that FD field points at Region I–II
interface z = 0 can be computed from Equation (3) with the reflection
coefficients as

ui,1 = uI(xi, z = 0) =
N∑

n=1

rnφI
n(xi). (13a)

Similarly we have

ui,0 = uI(xi,−∆z) = 2jφI
1
(xi) sin(βI

1∆z)+
N∑

n=1

rnφI
n
(xi)e−jβI

n∆z (13b)

Let us define the eigenfunction matrix ΦL and the propagation matrix
PL for the input waveguide region as

ΦL
∆=

[
ϕI

1, ϕ
I
2, . . . , ϕ

I
M

]
, ϕI

i
∆=




φI
i(x1)

φI
i(x2)
...

φI
i(xN )


 , (14a)

PL(∆z) ∆=




e−jβI
1∆z . . . 0

0
. . . 0

0 . . . e−jβI
N∆z


 . (14b)

Figure 4. FD-FD TM grid points near a material interface. The four
circled points are centers of integration for TM coefficients.
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Then we have

u0 =




u1,0
...

uN,0


 = 2j sin(βI

1∆z)ϕI
1 + ΦL ·P(∆z) · r, (15a)

where

r ∆=




r1

r2
...

rN


 = Φ−1

L · u1. (15b)

Finally we obtain the equation that relates u0 to u1 and the incident
wave.

u0 = 2j sin(βI
1∆z)ϕI

1 + AL · u1, AL = ΦL ·PL(∆z) ·Φ−1
L . (16)

Note that Φ−1
L can be approximated by the its own transpose ΦT

L for
real dielectric waveguide whose eigenfunctions are orthogonal to each
other and can be normalized. To relate uM+1 to uM , we evaluate
Equation (4) at uM and uM+1 points. We have

ui,M = uIII(xi, Lz) =
N∑

n=1

tnφIII
n

(xi), (17a)

and

ui,M+1 = uIII(xi, Lz + ∆z) =
N∑

n=1

tnφIII
n

(xi)e−jβIII
n ∆z. (17b)

t =




t1
t2
...

tN


 = Φ−1

R · uM . (17c)

uM+1 =




u1,(M+1)
...

uN,(M+1)


 = AR · uM , AR = ΦR ·PR(∆z) ·Φ−1

R . (17d)

Note that the eigenfunction matrix ΦR and the propagation matrix PR

in the exit waveguide region are defined by Equations (14a) and (14b)
in a similar way.
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2.4. Inverting the FD-FD Linear Equation

We now have FD-FD equations for all field points in the transition
region. These variables are organized into M column vectors which
satisfy a block tri-diagonal matrix equation with a bandwidth of
2N + 1. Since research on finding robust iterative methods for solving
discretized Helmholtz equation is still being actively pursued, we turn
to direct methods for the numerical solution of the banded matrix
equation such as Gaussian elimination or the LU factorization. Both
methods require about N3 · M floating point operations. A modern
day high-end PC with 4GB memory can hold up a quarter million
variables, i.e., N,M ≈ 500, and intermediate storage in core memory.
The total run time for the largest problem is well under ten minutes.

3. FD-FD RESULTS AND VERIFICATION

To illustrate and verify numerical results computed by our proposed
hybrid FD-FD method, we consider the following two problems, 1.
two-dimensional (2-D) free space Green’s function (FSGF), 2. 2-D
Green’s function of a dielectric slab waveguide (SWGF). The FD-FD
results are compared with exact analytical solution or by the rigorous
semi-analytical method.

3.1. Two-dimensional Free Space Green’s Function

The Helmholtz equation for the two-D free space Green’s function due
to a line source located in the origin is given by [3]

(∇2
t + k2

0

)
G (x, z) = −δ(x)δ(z). (18a)

The analytic closed-form solution is in term of the Hankel function of
the second kind as

G(ρ) = − j

4
H

(2)
0 (k0ρ), ρ =

√
x2 + z2 (18b)

In Figure 5 we compute and plot the 2-D field distribution the
free-space Green’s function computed by our hybrid FD-FD method
and by using Equation (18b), the exact analytic expression. Due to
symmetry in x and z we show only a rectangular slice using Nx = 400
by, Nz = 80 grids with the line source located at the lower right corner.
For the hybrid FD-FD we set the discretization density Nλ = 32 which
is number of points per wavelength so that ∆x = ∆z = λ/Nλ. We use
LM-TBC for the left computational boundary and an even-symmetry
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boundary condition for the right and bottom boundaries. Since all the
Nz field points located on the top computational boundary are more
than ten wavelengths away from the line source, we may approximate
the field at uNx, k by a local plane wave coming at an angle

θk = tan−1 k∆z

Nx∆x
, k = 0, 1, . . . , Nz. (19a)

Since θk ¿ 1, we use the following one-term TBC for grid points just
above the top boundary:

uNx+1,k = uNx, k · exp (−jk0 cos θk∆x) . (19b)

We see from comparing FD-FD images with those computed by the
exact solution that both the one-term TBC and LM-TBC work very
well.

To compute and quantify the FD-FD errors, we zero out the lower
right 4 by 4 corner points to remove the field singularity. We also
normalize the two complex field arrays so that the root mean square
(RMS) value of each simulation is set to be one. The RMS error which

Two-D Green's function, FD-FD vs analytic
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Figure 5. Real and imaginary part of the 2-D free space Green’s
function. The line source is located at the lower right corner. (a)
FD-FD real, (b) FD-FD imaginary, (c) analytic real and (d) analytic
imaginary.
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is defined as

EFD
RMS =

{
1

(Nz + 1)(Nx + 1)

Nz∑

k=0

Nx∑

i=0

|ui, k − u(xi, zk)|2
}1/2

, (20)

where {ui, k} is the normalized complex FD-FD field and u(xi, zk) is the
normalized complex 2-D free-space Green’s function. Using Nλ = 32,
we compute EPMCW

RMS = 0.16 for LM-TBC with a top PMCW and
EPECW

RMS = 0.14 for LM-TBC with a top PECW. We will show that the
RMS error of the combined field EMW+EW

RMS is reduced to .053.

3.2. Reducing LM-TBC Corner Reflection

Even though we take very careful steps processing the four FD-FD
computational edges, we are still seeing quite significant amount of
reflected energy scattering off the top-left corner due to the upper
PMCW in the LM-TBC region. It is known that the planar reflection
coefficient from the PEMW changes sign when the wall is replaced by a
PECW. To further reduce LM-TBC corner reflection all our hybrid FD-
FD calculations in Figure 5 and all the remaining figures are computed
as the average of the two independent FD-FD simulations each with
an opposite wall type. In other words,

ui,j =
1
2

(
uPECW

i,j + uPMCW
i,j

)
, for all i, j. (21)

This would help to cancel some but not all reflected power. The
new EMW+EW

RMS is now reduced to .053 which is not much larger than
the expected phase error produced by the standard five-point FD
approximation to the continuous Laplacian operator. The difference
between the two calculations along the LM-TBC boundary is plotted
on the top of Figure 6 along with the line plot of the exact 2-D Green’s
function (GF). The RMS of absolute errors for this trace is 0.072. For
comparison, the same RMS errors for the trace passes through the line
source is 0.029. We see that LM-TBC has done its job and produces
small difference from the exact solution. We also notice that the error
is greater near the corner where the two TBC boundaries meet.

3.3. Two-dimensional Green’s Function in an Open
Dielectric Slab Waveguide

To verify LM-TBC’s performance in a layer structure, we plot in
Figure 7, 2-D TE Ey(x, z) field distribution of slab waveguide Green’s
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Figure 6. Real and imaginary part of the 2-D free space Green’s
function along the LM-TBC boundary. The top two curves are the
difference between the two methods. For clarity, an offset is added to
the dc-free error traces. The RMS of the absolute errors is 0.072.

function computed by our hybrid FD-FD method and by the following
semi-analytical expression [36]:

G (x, z) =
∞∑

n=1

gn (z) φn (x) =
∞∑

n=1

φn (0)
2jβn

φn (x) e−jβn|z|,

δ(x) =
∞∑

n=1

φn (0) φn (x) , (22)

(
d2

dz2
+ β2

)
gn (z) = −δ (z) , gn (z) =

1
2jβn

e−jβn|z|.

Here φn is the nth discretized slab waveguide mode function. Like
the LM-TBC formulation, G(x, z) in Equation (22) is the line source
response of a dielectric slab waveguide confined inside a pair of parallel
walls. Vertically traveling EM waves can not escape from the two
parallel walls. In the limit of an infinite wall separation, G(x, z)
becomes the exact unbounded Green’s function. To ensure that we are
computing accurate semi-analytical solutions, the PECW and PMCW
are placed at Lx = 1950µm far away from the core. The reference semi-
analytical solutions are taken from the average of two calculations:

u(x, z) =
1
2

(
uPECW(x, z) + uPMCW(x, z)

)
. (23)
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The slab waveguide is made of a 0.8 µm thick glass core surrounded
in the air operated at λ = 1.3 µm. We use the same Nx = 400 by
Nz = 80 FD-FD grid size with the line source located at the lower
right corner. Core grid density is set at Nλ = 32 making Nλ = 48 for
grid points in the air. The same one-term TBC is used for up most grid
points located at x = 10.4µm. The incident ray angles are computed
from the primary arriving rays under geometry optics and Snell’s law.
The TM Hy(x, z) results are plotted in Figure 8.

Compared with reference semi-analytical solutions, we observe
ETE

RMS = 0.073 and ETM
RMS = 0.056 for our hybrid FD-FD method.

The errors are slightly higher than the free space case. We believe that
some part of the errors is from the effects of finite PECW/PMCW
separation, some comes from the simple one-term TBC at the top
boundary. To save space, we will not repeat line plots of absolute
differences considering also that the error distribution in Figures 7 and
8 for the slab waveguide are similar to those in the free space case.

We see from Equation (22) that the line source excites various
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Figure 7. Real and imaginary
part of the 2-D TE field in an
open slab waveguide due to a
line source at the lower right
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modes in the slab waveguide. These mode fields are clearly transmitted
off the FD domain as there are visually no difference between the FD
and the semi-analytical simulations. Thus, except near the FD corners,
LM-TBC is capable of absorbing/transmitting all modes including
guiding modes, cladding modes and even evanescent waves across the
FD-Analytic domain junction. We also notice from comparing Figure 7
with Figure 8 that TM wave fields are better confined in the waveguide
than the TE wave fields.

Our final numerical verification is the study of scattered power
in the quasi-adiabatic linear tapered waveguide example of Figure 1.
The taper slope is increased to 30 degrees in order to produce enough
reflection to justify the use of bi-directional full-wave algorithm of our
hybrid FD-FD method. We also use a higher grid density with Nλ =
30/45 in the core/cladding region to reduce FD-FD grid dispersion
error. Our hybrid FD-FD method will be compared with a semi-
analytical method called couple transverse-mode integral-equation
(CTMIE) [37]. The tapered waveguide is “stair-case” approximated
using 51 slices of slab waveguides. From these slice modes (720 for
each slice), CTMIE constructs the integral operators and computes the
normalized reflected and transmitted powers of the tapered waveguide.
The power coefficients are further divided into guided power and

Table 1. Comparison of computed power reflection and transmission
coefficients of a 30 degree linear taper waveguide from a 4.65µm thick
input slab waveguide to a 2µm thick output slab waveguide. The
capital letter G/R denotes guided/radiating power and lower case
letter r/t stands for reflected/transmitted power. Other parameters
are the same as in Figure 1.

Polarization
CTMIE
51 slices

FDFD
Nλ = 30

Gr
TE
TM

0.0009
0.0005

0.0010
0.0004

Gt
TE
TM

0.8258
0.8471

0.8252
0.8493

Rr
TE
TM

0.0016
0.0020

0.0012
0.0022

Rt
TE
TM

0.1716
0.1504

0.1714
0.1518
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radiating power ratios. Both TE and TM polarization are compared
and the numerical results are listed in Table 1.

Although the relative errors in reflected power Gr and Rr are more
than 10 percents, the absolute values are very small. The much larger
transmitted powers Gt and Gr agree with each other with a better
than 99% accuracy. As a result, we are confident that both methods
produce valid answers. Thus, the proposed hybrid FD-FD method is
suitable for studying complex, small to medium size, optical waveguide
devices.

While LM-TBC is developed for the 2-D hybrid FDFD method,
the boundary condition could be of interest to those FDTD researchers
who are interested in novel boundary conditions. It can be modified
as a convolution operator to work with FDTD methods in 2D and 3D
applications.

4. CONCLUSION

In this paper, we develop a hybrid FD-FD method suitable for studying
two-dimensional optical waveguide devices for both TE and TM
polarizations. Our layer-mode based transparent boundary condition,
LM-TBC, is capable of launching an incident wave and simultaneously,
directing the reflected and the transmitted scattered wave fields back
and forward to the analytical regions. Using the exact free space
Green’s function, an “approximate” Green’s function for a dielectric
slab waveguide and a semi-analytic solution to a linearly tapered
waveguide, we verify the effectiveness of our propose hybrid FD-FD
method which allows us to solve for many complex 2-D waveguide
devices with horizontally stratified input/output waveguides.
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