Vol. 17
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-18
Analysis of Clutter Reduction Techniques for through Wall Imaging in UWB Range
By
Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009
Abstract
Nowadays, through wall imaging (TWI) is a emerging topic of research in which one of the most important tasks is to minimize the clutter through which detection accuracy can be improved. Clutter in TWI is due to many reasons like wall coupling, antenna coupling, multiple reflections etc. To analyze the clutter reduction techniques, firstly we indigenously assembled a TWI system (i.e. step frequency continuous wave radar (SFCW)) in UWB range (freq. 3.95 GHz to 5.85 GHz), and different observations have been taken. We have considered metallic plate and one more material with low dielectric constant (Teflon) as a target and kept them behind the plywood wall. A-scan and B-scan observations have been carried out. The observed data are preprocessed for imaging and then different types of clutter reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA), Factor Analysis (FA) and Singular Value Decomposition (SVD) have been applied, and results were analyzed. Signal to noise ratio (SNR) of the final images (i.e., after clutter removal with different techniques) has been computed to compare the results and know the effectiveness of individual clutter removal techniques. It is observed that ICA has better capability to remove the clutter in comparison to other applied techniques; especially it is found that ICA has a capability to distinguish the difference between clutter and low dielectric target whereas other clutter removal techniques are not showing significant result.
Citation
Pramod Kumar Verma, Abhay N. Gaikwad, Dharmendra Singh, and M. J. Nigam, "Analysis of Clutter Reduction Techniques for through Wall Imaging in UWB Range," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903
References

1. Baranoski, E. J., "Through-wall imaging: Historical perspective and future directions," J. Franklin Inst., Vol. 345, 556-569, Jan. 2008.
doi:10.1016/j.jfranklin.2008.01.005

2. Farwell, M., J. Ross, R. Luttrell, D. Cohen, W. Chin, and T. Dogaru, "Sense through the wall system development and design considerations," J. Franklin Inst., Vol. 345, 570-591, Jan. 2008.
doi:10.1016/j.jfranklin.2008.01.004

3. Dehmollaian, M., M. Thiel, and K. Sarabandi, "Through-the-wall imaging using differential SAR," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1289-1296, May 2009.
doi:10.1109/TGRS.2008.2010052

4. Yegulalp, A. F., "Fast backprojection algorithm radar for synthetic aperture,", The Record of the 1999 IEEE Radar Conference, 60-65, Waltham, MA, USA, Apr. 1999.

5. Cui, G., L. Kong, and J. Yang, "A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR 2007, 123-126, 2007.

6. Lundgren, W., U. Majumder, M. Backues, K. Barnes, and J. Steed, "Implementing SAR image processing using backprojection on the cell broadband engine," IEEE Conference on Radar, 1-6, May 2008.
doi:10.1109/RADAR.2008.4721086

7. Ahmad, F., M. G. Amin, S. A. Kassam, and G. J. Frazer, "A wideband synthetic aperture beamformer for through-the-wall imaging," IEEE International Symposium on Phased Array Systems and Technology, 187-192, Oct. 2003.
doi:10.1109/PAST.2003.1256979

8. Xu, X. and R. M. Narayanan, "Enhanced resolution in SAR/ISAR imaging using iterative sidelobe apodization," IEEE Trans. Image Processing, Vol. 14, No. 4, 537-547, Apr. 2005.
doi:10.1109/TIP.2004.841198

9. Xu, X., E. L. Miller, C. M. Rappaport, and G. D. Sower, "Statistical method to detect subsurface objects using array ground-penetrating radar data," IEEE Trans. Geosci. Remote Sensing, Vol. 40, 963-976, Apr. 2002.
doi:10.1109/TGRS.2002.1006391

10. Merwe, A. V. and I. J. Gupta, "A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 2627-2637, Nov. 2000.

11. Zoubir, A. M., I. J. Chant, C. L. Brown, B. Barkat, and C. Abeynayake, "Signal processing techniques for landmine detection using impulse ground penetrating radar," IEEE Sensors J., Vol. 2, No. 1, 41-51, Feb. 2002.
doi:10.1109/7361.987060

12. Kempen, V. L. and H. Sahli, "Signal processing techniques for clutter parameters estimation and clutter removal in GPR data for landmine detection," Statistical Signal Processing, 2001 Proceedings of the 11th IEEE Signal Processing Workshop, 158-161, May 2001.
doi:10.1109/SSP.2001.955246

13. Vicen-Bueno, R., R. Carrasco-lvarez, M. Rosa-Zurera, and J. C. Nieto-Borge, "Sea clutter reduction and target enhancement by neural networks in a marine radar system," Sensors, Vol. 9, 1913-1936, 2009.
doi:10.3390/s90301913

14. Chan, L. A., N. M. Nasrabadi, and D. Torrieri, "Eigenspace trans-formation for automatic clutter rejection," Optical Engineering, Vol. 40, No. 4, 564-573, Apr. 2001.
doi:10.1117/1.1355258

15. Xie, N., H. Leung, and H. Chang, "A multiple-model prediction approach for sea clutter modeling," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 1491-1502, Jun. 2003.

16. Yu, C. Q., X. S. Guo, A. Zhang, and X. J. Pan, "An improvement algorithm of principal component analysis," International Conference on Electronic Measurement and Instruments, 2529-2534, Jul. 2007.

17. Diamantaras, K. I., "PCA neural models and blind signal separation," International Joint Conference on Neural Networks, Vol. 4, 2997-3002, Jul. 2001.

18. Abujarad, F. and A. Omar, "GPR data processing using the component-separation methods PCA and ICA," IEEE International Workshop on Imaging Systems and Techniques, 60-64, Apr. 2006.
doi:10.1109/IST.2006.1650776

19. Karlsen, B., J. Larsen, H. B. D. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal land-mine detection," Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 146-149, Aug. 2001.
doi:10.1109/SSP.2001.955243

20. Comon, P., "Independent component analysis, a new concept," Signal Processing, Vol. 36, 287-314, Apr. 1994.
doi:10.1016/0165-1684(94)90029-9

21. Baloch, S. S. H., H. Krim, and M. G. Genton, "Robust independent component analysis," 13th IEEE Workshop on Statistical Signal Processing, 61-64, Jul. 2005.
doi:10.1109/SSP.2005.1628565

22. Hyvarinen, A., J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley and Sons, 2001.

23. Hyvarinen, A., "Fast and robust fixed-point algorithms for independent component analysis," IEEE Trans. Neural Net., Vol. 10, No. 3, 626-634, 1999.
doi:10.1109/72.761722

24. Chen, C. H. and W. Zhenhai, "ICA and factor analysis application in seismic profiling," IEEE International Conference on Geoscience and Remote Sensing Symposium, 1560-1563, Aug. 2006.
doi:10.1109/IGARSS.2006.402

25. Wu, N. and J. Zhang, "Factor analysis based anomaly detection," Information Assurance Workshop, 2003, IEEE Systems, Man and Cybernetics Society, 108-115, Jun. 2003.
doi:10.1109/SMCSIA.2003.1232408

26. Hong, S., "Warped image factor analysis," 1st IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, 121-124, Dec. 2005.
doi:10.1109/CAMAP.2005.1574199

27. Abujarad, F., A. Jostingmeier, and A. S. Omar, "Clutter removal for landmine using different signal processing techniques," Proceedings of the Tenth IEEE International Conference on Ground Penetrating Radar, GPR 2004, 697-700, Jun. 2004.

28. Wall, M. E., A. Rechtsteiner, and L. M. Rocha, "Singular value decomposition and principal component analysis," A Practical Approach to Microarray Data Analysis, Chapter 5, 91-109, Boston, MA, USA, 2003.

29. Chandra, R., A. N. Gaikwad, D. Singh, and M. J. Nigam, "An approach to remove the clutter and detect the target for ultra-wideband through-wall imaging," Journal of Geophysics and Engineering, Vol. 5, 412-419, Oct. 2008.
doi:10.1088/1742-2132/5/4/005

30. Cois Cardoso, J., "Blind signal separation: Statistical principles," IEEE Proc., Vol. 86, No. 10, 2009-2025, Oct. 1998.
doi:10.1109/5.720250

31. Liu, J. X., B. Zhang, and R. B.Wu, "GPR ground bounce removal methods based on blind source separation," PIERS Online, Vol. 2, No. 3, 256-259, 2006.
doi:10.2529/PIERS050904044110

32. Saul, L. K. and M. G. Rahim, "Maximum likelihood and minimum classification error factor analysis for automatic speech recognition," IEEE Trans. Speech Audio Process., Vol. 8, No. 2, 115-125, Mar. 2000.
doi:10.1109/89.824696

33. Rubin, D. and D. Thayer, "EM algorithms for factor analysis," Psychometrika, Vol. 47, No. 1, 69-76, Mar. 1982.
doi:10.1007/BF02293851

34. Wei, G. W., "Generalized Perona-Malik equation for Image restoration," IEEE Signal Proc. Letters, Vol. 6, No. 7, 165-167, Jul. 1999.
doi:10.1109/97.769359