Vol. 16
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-03
A Priori Modeling for Gradient Based Inverse Scattering Algorithms
By
Progress In Electromagnetics Research B, Vol. 16, 407-432, 2009
Abstract
This paper presents a Fisher information based Bayesian approach to analysis and design of the regularization and preconditioning parameters used with gradient based inverse scattering algorithms. In particular, a one-dimensional inverse problem is considered where the permittivity and conductivity profiles are unknown and the input data consist of the scattered field over a certain bandwidth. A priori parameter modeling is considered with linear, exponential and arctangential parameter scalings and robust preconditioners are obtained by choosing the related scaling parameters based on a Fisher information analysis of the known background. The Bayesian approach and a principal parameter (singular value) analysis of the stochastic Cramer-Rao bound provide a natural interpretation of the regularization that is necessary to achieve stable inversion, as well as an indicator to predict the feasibility of achieving successful reconstruction in a given problem set-up. In particular, the Tikhonov regularization scheme is put into a Bayesian estimation framework. A time-domain least-squares inversion algorithm is employed which is based on a quasi-Newton algorithm together with an FDTD-electromagnetic solver. Numerical examples are included to illustrate and verify the analysis.
Citation
Sven Nordebo, and Mats Gustafsson, "A Priori Modeling for Gradient Based Inverse Scattering Algorithms," Progress In Electromagnetics Research B, Vol. 16, 407-432, 2009.
doi:10.2528/PIERB09060805
References

1. Baussard, A. and O. V. D. Premel, "A bayesian approach for solving inverse scattering from microwave laboratory-controlled data," Inverse Problems, Vol. 17, No. 6, 1659-1669, 2001.
doi:10.1088/0266-5611/17/6/309

2. Bertero, M., "Linear inverse and ill-posed problems," Advances in Electronics and Electron Physics, Vol. 75, 1-120, 1989.

3. Bucci, O. M., L. Crocco, T. Isernia, and V. Pascazio, "Subsurface inverse scattering problems: Quantifying qualifying and achieving the available information," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, No. 11, 2527-2538, Nov. 2001.
doi:10.1109/36.964991

4. Chew, W. C. and Y. M.Wang, "Reconstruction of twodimensional permittivity distribution using the distorted born iterative method," IEEE Trans. Med. Imaging, Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

5. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.

6. Fhager, A., M. Gustafsson, S. Nordebo, and M. Persson, "A statistically based preconditioner for two-dimensional microwave tomography," Proceedings of the Second International Workshop on Computational Advances in Multi-sensor Adaptive Processing, 173-176, Oct. 2007.
doi:10.1109/CAMSAP.2007.4497993

7. Fhager, A. and M. Persson, "Comparison of two image reconstruction algorithms for microwave tomography," Radio Sci., Vol. 40, RS3017, Jun. 2005.
doi:10.1029/2004RS003105

8. Fletcher, R., Practical Methods of Optimization, John Wiley & Sons, Ltd., 1987.

9. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.

10. Greenbaum, A., Iterative Methods for Solving Linear Systems, SIAM Press, 1997.

11. Gustafsson, M., "Wave Splitting in Direct and Inverse Scattering Problems,", PhD thesis, Lund University, Department of Electromagnetic Theory, P. O. Box 118, Lund S-22100, Sweden, 2000, http://www.eit.lth.se.

12. Gustafsson, M. and S. He, "An optimization approach to twodimensional time domain electromagnetic inverse problems," Radio Sci., Vol. 35, No. 2, 525-536, 2000.
doi:10.1029/1999RS900091

13. Gustafsson, M. and S. Nordebo, "Cramer --- Rao lower bounds for inverse scattering problems of multilayer structures," Inverse Problems, Vol. 22, 1359-1380, 2006.
doi:10.1088/0266-5611/22/4/014

14. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702

15. Isakov, V., Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998.

16. Kaipio, J. and E. Somersalo, Statistical and Computational Inverse Problems, Springer-Verlag, 2005.

17. Kay, S. M., Fundamentals of Statistical Signal Processing, Estimation Theory, Prentice-Hall, Inc., 1993.

18. Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations, SIAM Press, 1995.

19. Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, 1996.

20. Knapp, C. H. and G. C. Carter, "The generalized correlation method for estimation of time delay," IEEE Trans. Acoustics, Speech, and Signal Process., Vol. 24, No. 4, 320-327, 1976.
doi:10.1109/TASSP.1976.1162830

21. Kristensson, G. and R. J. Krueger, "Direct and inverse scattering in the time domain for a dissipative wave equation. Part 1: Scattering operators," J. Math. Phys., Vol. 27, No. 6, 1667-1682, 1986.
doi:10.1063/1.527083

22. Marengo, E. A. and R. W. Ziolkowski, "Nonradiating and minimum energy sources and their fields: Generalized source inversion theory and applications," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1553-1562, Oct. 2000.
doi:10.1109/8.899672

23. Nordebo, S., A. Fhager, M. Gustafsson, and M. Persson, "A systematic approach to robust preconditioning for gradient based inverse scattering algorithms," Inverse Problems, Vol. 24, No. 2, 025027, 2008.
doi:10.1088/0266-5611/24/2/025027

24. Nordebo, S., M. Gustafsson, and B. Nilsson, "Fisher information analysis for two-dimensional microwave tomography," Inverse Problems, Vol. 23, 859-877, 2007.
doi:10.1088/0266-5611/23/3/001

25. Nordebo, S., M. Gustafsson, and K. Persson, "Sensitivity analysis for antenna near-field imaging," IEEE Trans. Signal Process., Vol. 55, No. 1, 94-101, Jan. 2007.
doi:10.1109/TSP.2006.885742

26. Nordebo, S. and M. Gustafsson, "Statistical signal analysis for the inverse source problem of electromagnetics," IEEE Trans. Signal Process., Vol. 54, No. 6, 2357-2361, Jun. 2006.
doi:10.1109/TSP.2006.873503

27. Pierri, R., A. Liseno, and F. Soldovieri, "Shape reconstruction from PO multifrequency scattered fields via the singular value decomposition approach," IEEE Trans. Antennas Propagat., Vol. 49, No. 9, 1333-1343, Sep. 2001.
doi:10.1109/8.947025

28. Pierri, R. and F. Soldovieri, "On the information content of the radiated fields in the near zone over bounded domains," Inverse Problems, Vol. 14, No. 2, 321-337, 1998.
doi:10.1088/0266-5611/14/2/008

29. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

30. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-di®erence Time-domain Method, Artech House, 2000.

31. Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, Philadelphia, 2005.

32. Tipping, M. E., "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learning Res., Vol. 1, No. 2, 211-244, 2001.
doi:10.1162/15324430152748236

33. Van Trees, H. L., Detection, Estimation and Modulation Theory, Part I, John Wiley & Sons, Inc., 1968.

34. Yu, Y. and L. Carin, "Three-dimensional Bayesian inversion with application to subsurface sensing," IEEE Trans. Geoscience and Remote Sensing, Vol. 45, No. 5, 1258-1270, 2007.
doi:10.1109/TGRS.2007.894932

35. Yu, Y., B. Krishnapuram, and L. Carin, "Inverse scattering with sparse Bayesian vector regression," Inverse Problems, Vol. 20, No. 6, S217-S231, 2004.
doi:10.1088/0266-5611/20/6/S13