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Växjö University
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Abstract—This paper presents a Fisher information based Bayesian
approach to analysis and design of the regularization and precondition-
ing parameters used with gradient based inverse scattering algorithms.
In particular, a one-dimensional inverse problem is considered where
the permittivity and conductivity profiles are unknown and the input
data consist of the scattered field over a certain bandwidth. A priori
parameter modeling is considered with linear, exponential and arctan-
gential parameter scalings and robust preconditioners are obtained by
choosing the related scaling parameters based on a Fisher information
analysis of the known background. The Bayesian approach and a prin-
cipal parameter (singular value) analysis of the stochastic Cramér-Rao
bound provide a natural interpretation of the regularization that is
necessary to achieve stable inversion, as well as an indicator to predict
the feasibility of achieving successful reconstruction in a given problem
set-up. In particular, the Tikhonov regularization scheme is put into
a Bayesian estimation framework. A time-domain least-squares inver-
sion algorithm is employed which is based on a quasi-Newton algorithm
together with an FDTD-electromagnetic solver. Numerical examples
are included to illustrate and verify the analysis.
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1. INTRODUCTION

Inverse scattering problems of technical interest are almost always ill-
posed, see e.g., [2, 5, 9, 11, 15, 16, 19, 22, 29, 31]. With noisy data,
a proper regularization has to be incorporated in order to guarantee
stable inversion, and there is only a limited resolution attainable,
see e.g., [2, 5, 13, 19]. When applicable, the number of degrees of
freedom [2, 3, 27, 28] of a linear operator can be used to obtain an
estimate of the number of retrievable parameters of an object, and
hence a coarse estimate of the resolution. Another approach is to
employ a Fisher information analysis and the Cramér-Rao bound to
quantify the ill-posedness of the reconstruction and the inherent trade-
off between the accuracy and the resolution, see e.g., [13, 24–26]. To
regularize the problem, the classical approach is to employ the well-
known Tikhonov regularization [16] which controls the modeling error
as well as a suitable norm of the image itself.

Recently, there has been an increased interest in Bayesian
principles for inverse problems, see e.g., [1, 32, 34, 35]. One possibility
is to include the Tikhonov regularization parameter in a Bayesian
framework and devise efficient algorithms to determine this parameter
from the data, see [1, 32, 34, 35]. These approaches, and the related
derivations leading to useful algorithms, usually relies on some form of
linearization, such as e.g., with the distorted Born iterative method [4],
etc. However, the approach taken here is different. A similar
connection is exploited as in e.g., [34], i.e., the connection between
the Maximum A Posteriori (MAP) estimate with a Gaussian prior,
and the Tikhonov regularization. However, instead of placing a prior
on the regularization parameter itself, the MAP criterion is exploited
here in a Fisher information analysis setting, which is relating to some
known background of interest.

The Fisher information analysis [13, 24] has been employed
recently to obtain a robust preconditioner for gradient based inverse
scattering algorithms, see [6, 23]. The main idea in [23] is to incorporate
a linear parameter scaling such that the scaled Fisher information
has a unit diagonal at some known background parameter value, cf.,
the Jacobi preconditioner in numerical analysis [10, 18]. The purpose
of the present paper is to build further on the Fisher information
based preconditioner in [23] by integrating it with a Tikhonov type
regularization. The aim is to develop an analysis that is able to
relate the optimal estimation error (the Cramér-Rao bound), the
regularization constant, the noise level and the spatial resolution
in a given measurement situation. For this purpose, the Tikhonov
regularization scheme is put into a Bayesian estimation framework,
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and a principal parameter (singular value) analysis of the stochastic
Cramér-Rao bound is used to determine the regularization that is
necessary to achieve stable inversion, as well as an indicator to predict
the feasibility of achieving successful reconstruction in a given problem
set-up.

The Fisher information based preconditioner employed in [23] is
furthermore extended here to include nonlinear (a priori) parameter
modeling using exponential and arctangential parameter scalings (or
transformations), see also [31]. In this way, a priori information
such as a lower (and/or upper) parameter bound (or range) can
be straightforwardly included in the model. Examples of numerical
inversion are used to illustrate that the Fisher information based
sensitivity analysis is able to devise suitable regularization constants,
as well as to indicate the feasibility of finding a useful solution to the
inverse problem at hand, with a given signal to noise ratio, etc. As
expected, the incorporation of nonlinear a priori parameter models
such as the exponential or arctangential scalings will in some cases
(when the background parameter values are close to their bounds) yield
inversion results that performs much better than what is indicated
by the Fisher information analysis. This is quite natural since the
Fisher information analysis does not take upper and lower parameter
bounds into account. Furthermore, the Fisher information analysis is
effectively based on a linearization (first order differentials) about the
known background, and is therefore most reliable for weak scattering
problems, and do not take high contrast (nonlinear) effects into
account.

The purpose of this paper is to present a Fisher information based
Bayesian approach to analysis and design of the regularization and
preconditioning parameters used with gradient based inverse scattering
algorithms. A time-domain least-squares inversion algorithm [11]
based on a quasi-Newton algorithm [8] together with an FDTD-
electromagnetic solver [30] has been employed in order to generate
the numerical examples. A one-dimensional inverse scattering
problem is considered as it offers a natural introduction to parameter
identification and wave splitting techniques cf., [11, 21]. Note, however,
that the one-dimensional inverse problems are oftenly associated with
severe uniqueness and stability problems due to the lack of spatial
redundancy in the measured data. This is in contrast to the two- and
three-dimensional inverse problems where spatial information can be
exploited. Hence, it is only possible to retrieve a limited number of
parameters in the one-dimensional inverse problems [11, 15, 21].

The rest of the paper is outlined as follows. In Section 2 is
presented a brief review of the one-dimensional inverse scattering
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problem with basic gradient expressions, a conditional statistical
analysis containing Maximum Likelihood (ML) estimation and the
Fisher information analysis. In Section 3, is presented the
Fisher information based preconditioning strategy covering linear,
exponential and arctangential parameter scalings. In Section 4 is
given the Bayesian, or Maximum A Posteriori (MAP) framework for
Tikhonov regularization and a principal (SVD) parameter analysis of
the stochastic Cramér-Rao bound. Section 5 contains the numerical
examples and Section 6 the summary and conclusions.

2. FISHER INFORMATION ANALYSIS FOR THE
ONE-DIMENSIONAL INVERSE SCATTERING
PROBLEM

Fisher information analysis for one- and two-dimensional inverse
scattering problems have been treated in detail in e.g., [13, 23, 24].
A brief review of some of the main results regarding a conditional
statistical analysis of the one-dimensional inverse scattering problem
is given below to provide a generic framework for the subsequent a
priori analysis and modeling.

2.1. The One-dimensional Inverse Scattering Problem

Consider the one-dimensional electromagnetic inverse scattering
problem of imaging a finite slab 0 ≤ x ≤ a with relative permittivity
and conductivity profiles ε(x) and σ(x), respectively, see Fig. 1. The
left half space x < 0 is free space with ε = 1 and σ = 0, and in the
right half space x > a the material parameters ε and σ are assumed to
take constant values. Let E(x, t) and H(x, t) denote the time domain
electric and magnetic field amplitudes of a plane wave propagating in
the x-direction.

E   (x,t)

x = 0 x = a x
σ= 0

E   (x,t)

 + 

_

σ (x)
=1

(x)

Figure 1. One-dimensional inverse scattering problem for a finite slab
0 ≤ x ≤ a with relative permittivity and conductivity profiles ε(x) and
σ(x), respectively.
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The imaging is based on a known incident field E+(0, t) and a
measurement of the scattered field E

(m)
− (t) at the boundary x = 0

for t ∈ [0, T ] where T is the length of the observation interval. The
following misfit functional is considered

J (ε, σ) =
∫ T

0
|E−(0, t)−E

(m)
− (t)|2dt (1)

where E−(0, t) is the modeled scattered field obtained as the solution
to the Maxwell’s equations †

{
ε∂tE − ∂xH + σE = 0
∂tH − ∂xE = 0 (2)

for x ∈ R and t ∈ [0, T ], together with the initial condition E = 0 for
x ≥ 0 and t = 0, and the boundary condition E+ = E+(0, t) for x = 0
and t ∈ [0, T ]. The split fields are defined as E± = (E ∓H)/2.

Assume that the spatial region S = {x|0 ≤ x ≤ a} =
∪I

i=1Si is decomposed into a finite set of disjoint intervals Si. The
relative permittivity and conductivity within the material is discretized
according to the finite expansions





ε(x) =
I∑

i=1

εiχi(x)

σ(x) =
I∑

i=1

σiχi(x)

(3)

where εi and σi are the optimization variables and χi(x) the
characteristic function for pixel Si, i.e., χi(x) = 1 if x ∈ Si and
χi(x) = 0 if x /∈ Si.

The gradients of the misfit functional (1) are given by




∂J
∂εi

= −
∫

Si

∫ T

0
Ẽ(x, t)∂tE(x, t)dtdx

∂J
∂σi

= −
∫

Si

∫ T

0
Ẽ(x, t)E(x, t)dtdx.

(4)

† Let k0, c0, ε0, µ0 and η0 denote the wave number, the speed of light, the permittivity,
the permeability and the wave impedance of free space, respectively. Further, let eiωt be
the time-convention where ω is the angular frequency. The common SI-unit quantities are
normalized as (t, ω, ε, σ, E, H, J)norm = (c0t, ω/c0, ε, η0σ,

√
ε0E,

√
µ0H,

√
µ0J) so

that the speed of wave propagation is normalized to unity and all fields are measured in
the same energy unit (Energy/Volume)1/2.
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where the adjoint electric and magnetic fields Ẽ and H̃ satisfy the
adjoint Maxwell’s equations

{ −ε∂tẼ + ∂xH̃ + σẼ = 0
−∂tH̃ + ∂xẼ = 0

(5)

for x ∈ R and t ∈ [0, T ], together with the boundary conditions
Ẽ−(0, t) = E−(0, t) − E

(m)
− (t) yielded from the solution of (2), see

e.g., [7, 11, 12, 23]. Note that (5) is solved backwards in time and the
“initial” conditions are Ẽ(x, T ) = 0 for x ≥ 0.

2.2. Conditional Statistical Analysis

Let ν = (ε, σ) denote the finite parameter vector with elements εi

and σi as defined in (3) and let x denote the vector of measurement
data with probability density function p(x|ν). To begin with, the
vector x may be taken as finite, containing either time domain or
frequency domain data. By using a limiting process as demonstrated
in e.g., [20, 23], the vector x may then be regarded as a collection of
data on a continuous (infinite) time or frequency domain. Below, the
angular frequency is denoted ω and the wave number k0 = ω/c0. As
a notational convention, the arguments of E(x, t) and E(x, f) indicate
whether the fields are in the time or frequency domains, respectively.

Under the assumption of uncorrelated Gaussian measurement
noise, the negative loglikelihood function for the inverse problem stated
in Section 2.1 above can be expressed as

− ln p(x|ν) = A +
1
4π

∫ ∞

−∞

1
RN(ω)

|E−(0, ω)− E
(m)
− (ω)|2dω

= A +
1

2N0
J (ν) (6)

where RN(ω) is the power spectral density of the measurement noise,
A is a constant, and J (ν) the misfit functional defined in (1), cf., [23].
Here, the power spectral density of the measurement noise is assumed
to be a constant RN(ω) = N0 over the relevant bandwidth. Hence,
with the Gaussian model for the measurement noise, the optimization
problem stated in Section 2.1 based on the misfit functional (1) is
equivalent to the classical Maximum Likelihood (ML) criterion, see
also [14, 16, 17, 23].

The Fisher information matrix [17] for the parameters εi and σi

based on the same statistical (Gaussian) measurement model as above,
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is given by

[Iνζ ]ij =
1
2π

∫ ∞

−∞

1
RN(ω)

∂E∗−(0, ω)
∂νi

∂E−(0, ω)
∂ζj

dω (7)

where (·)∗ denotes the complex conjugate and ν and ζ are either ε or
σ, and i, j = 1, . . . , I, cf., [23]. For a homogenous background, it can
be shown that the sensitivity field is given by

∂E−(0, ω)
∂νi

= −2gν
E+(0, ω)

(1 +
√

εc)2
sin(k∆x)

k∆x
∆xe−ik(2i−1)∆x (8)

where gν = 1 if ν = σ and gν = iω if ν = ε, and where k = k0
√

εc =
ω
√

εc, εc = ε− iσ/ω, Si = [(i−1)∆x, i∆x] and ∆x the spatial sampling
interval, see [23]. After evaluating (7), the total Fisher information
matrix is assembled as

I(ν) =
( Iεε Iεσ

Iσε Iσσ

)
. (9)

3. FISHER INFORMATION BASED PARAMETER
SCALING

A robust preconditioning strategy based on the Fisher information
analysis together with a linear parameter scaling has been treated
in [6, 23]. Below, these ideas are extended to incorporate non-
linear parameter scalings such as the exponential and arctangential
parameter models. The advantage of using a non-linear parameter
model (or scaling) is that it has the ability to efficiently incorporate
a priori information such as lower and upper parameter bounds, see
also [14, 31].

The optimization problem aims at minimizing the mistfit
functional (1), or equivalently, to minimize the negative loglikelihood
function (6). The Hessian of the negative loglikelihood function is given
by

[H(x|ν)]ij = −∂2 ln p(x|ν)
∂νi∂νj

(10)

and the Fisher information matrix is defined by

[I(ν)]ij = E{[H(x|ν)]ij} = −E
{

∂2 ln p(x|ν)
∂νi∂νj

}
, (11)

where E{·} denotes the expectation operator, see e.g., [17].
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A robust preconditioner is obtained by incorporating a parameter
scaling (or transformation) such that the scaled (or transformed) Fisher
information has a unit diagonal at some known background parameter
value ν, cf., the Jacobi preconditioner in numerical analysis [10, 18].
Since the Fisher information matrix is the mean value of the Hessian
in the corresponding Maximum Likelihood estimation problem, it
is expected that such a strategy will stabilize any gradient based
numerical inversion algorithm and that the problem with local minima
should be alleviated [6, 23]. The preconditioner is robust in the sense
that the scaling, i.e., the diagonal Fisher information is virtually
invariant to the numerical resolution and the discretization (pixel)
model that is employed, see [6, 23] for a detailed study about this issue.

Consider the following linear and nonlinear parameter models

νi = ξi/βi + ν0i Linear
νi = αieξi/βi + ν0i Exponential
νi = αi arctan(ξi/βi + ξ̄i) + ν0i Arctangential

(12)

where ξi is the new optimization variable and βi the scaling constant.
Here, αi, ν0i, and ξ̄i are a priori chosen model constants.

With the linear scaling, it is assumed that the known background
corresponds to ξi = 0, or νi = ν0i. The gradient is given by ∂

∂ξi
=

Gi
∂

∂νi
and the scaled Fisher information is [I(ξ)]ij = GiGj [I(ν)]ij

where Gi = 1
βi

. Hence, a robust Fisher information based Jacobi
preconditioner with [I(ξ)]ii = 1, is given by





βi =
√

I(ν)]ii
∂

∂ξi
=

1√
[I(ν)]ii

∂

∂νi

(13)

and the resulting scaled Fisher information matrix is given by

[I(ξ)]ij =
1√

[I(ν)]ii
√

[I(ν)]jj
[I(ν)]ij . (14)

With the exponential scaling, it is assumed that the known
background corresponds to ξi = 0, or νi = αi +ν0i where ν0i represents
a lower parameter bound. The gradient is given by ∂

∂ξi
= Gi

∂
∂νi

and the scaled Fisher information is [I(ξ)]ij = GiGj [I(ν)]ij where
Gi = αi

βi
eξi/βi . The appropriate scaling is then given by





βi = αi

√
[I(ν)]ii

∂

∂ξi
=

1√
[I(ν)]ii

eξi/βi
∂

∂νi

(15)
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and the resulting scaled Fisher information matrix at the background
level ξ = 0 is again given by (14).

With the arctangential scaling, it is assumed that the known
background corresponds to ξi = 0, or νi = αi arctan(ξ̄i) + ν0i.
Further, if vui and vli denotes upper and lower parameter bounds,
respectively, it is seen that 2v0i = vui + vli and παi = vui − vli. The
gradient is given by ∂

∂ξi
= Gi

∂
∂νi

and the scaled Fisher information
is [I(ξ)]ij = GiGj [I(ν)]ij where Gi = αi

βi
(1 + (ξi/βi + ξ̄i)2)−1. The

appropriate scaling is then given by




βi =
αi

1 + ξ̄i
2

√
[I(ν)]ii

∂

∂ξi
=

1 + ξ̄i
2

1 + (ξi/βi + ξ̄i)2
1√

[I(ν)]ii

∂

∂νi

(16)

and the resulting scaled Fisher information matrix at the background
level ξ = 0 is again given by (14).

The contrast in the scaled parameter ∆ξi corresponding to a
deviation ∆νi with respect to the known background, is given for the
three parameter models in (12) as follows

∆ξi =
√

[I(ν)]ii∆νi (17)

∆ξi = αi

√
[I(ν)]ii ln

(
1 +

∆νi

αi

)
(18)

∆ξi =
αi

√
[I(ν)]ii

1 + ξ̄i
2

[
tan

(
∆νi

αi
+ arctan(ξ̄i)

)
− ξ̄i

]
. (19)

Obviously, the nonlinear models above yield

∆ξi ≈
√

[I(ν)]ii∆νi (20)

when ∆νi
αi

is small.

4. A PRIORI MODELING AND REGULARIZATION

4.1. The a Priori Statistics of Tikhonov Regularization

In inverse problem theory and applications, it is common to employ a
Tikhonov type of regularization that punish rapid spatial variations in
the medium parameters, see e.g., [11]. Hence, the following Tikhonov
regularization scheme may be considered

min
ξ

{
J (ξ) + γ

∫ a

0

(
∂ξ

∂x

)2

dx

}
(21)
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where γ is the regularization constant. By employing the boundary
conditions ξ(0) = ξ(a) = 0 and integrating by parts, the integral above
can be approximated in discrete form as

∫ a

0

(
∂ξ

∂x

)2

dx = −
∫ a

0
ξ(x)

∂2ξ

∂x2
dx ≈ 1

∆x
ξTC̄−1ξ (22)

where ∆x is the discretization interval, ξ an N × 1 sample vector and

C̄−1 =




2 −1 0
−1 2 −1

. . .
−1 2 −1
0 −1 2




(23)

an N × N symmetric Toeplitz matrix. It is noted that the matrix
C̄−1 is the inverse of the symmetric matrix C̄ with elements [C̄]ij =
i(N − j + 1)/(N + 1) for j ≥ i and [C̄]ij = [C̄]ji.

Now, the Tikhonov regularization scheme can be given an
unconditional statistical (or Bayesian estimation) interpretation as
follows. Assume that the parameter vector ξ has zero mean and
known prior Gaussian distribution with probability density function
p(ξ) where ln p(ξ) = d− 1

2ξTC−1ξ, d is a constant and the correlation
matrix C is given by

C = E {
ξξT

}
=

∆xN0

γ
C̄ (24)

where N0 is the spectral density of the measurement noise. The spatial
variance and correlation coefficient corresponding to the correlation
matrix C̄ is depicted in Fig. 2 below.

The Maximum A Posteriori (MAP) criterion [14, 16, 17] is to
maximize the posterior conditional density function p(ξ|x) with respect
to ξ where x is the measurement vector, or equivalently, to minimize
the function − ln p(x|ξ) − ln p(ξ) where − ln p(x|ξ) is the negative
loglikelihood function defined in (6). Hence, the MAP criterion can
be stated as

min
ξ

{
1

2N0
J (ξ) +

1
2
ξTC−1ξ

}
(25)

which is equivalent to (21) when C−1 = γ
∆xN0

C̄−1 according to the
definition (24). Note that the gradient corresponding to (25) is given
by

1
2N0

∂

∂ξ
J (ξ) + C−1ξ (26)
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Figure 2. Spatial variance [C̄]ii/(N + 1) and correlation coefficient

[C̄]ij/
√

[C̄]ii[C̄]jj plotted for large N (N = 100). In the right figure,
the various curves correspond to j/N = {0.1, 0.3, 0.5, 0.7, 0.9}.

where ∂
∂νJ (ν) has been defined in Section 2.1 and ∂

∂ξ in Section 3.
According to the Bayesian statistical analogue given above, the use

of the Tikhonov regularization scheme is equivalent to the assumption
of a certain prior Gaussian parameter distribution together with an
application of the MAP criterion. As will be demonstrated by using
numerical experiments below, even if this parameter model is not
physically justified, the statistical analogue is useful for characterizing
the balance between the estimation error (the Cramér-Rao bound),
the regularization constant, the signal to noise ratio and the spatial
resolution in a given measurement situation. The aim is to employ
the Fisher information analysis as a tool to predict the feasibility of
successful reconstruction as well as to choose a proper regularization
constant.

4.2. Principal Parameter Analysis

The Fisher information matrix for a stochastic vector parameter ξ is
given by

I = −Ex,ξ

{
∂2 ln p(ξ|x)

∂ξ∂ξT

}

= −EξEx|ξ
{

∂2 ln p(x|ξ)
∂ξ∂ξT

}
− Eξ

{
∂2 ln p(ξ)
∂ξ∂ξT

}

= Eξ {I(ξ)}+ C−1 (27)
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where Ex,ξ and Ex|ξ denote the unconditional and the conditional
expectation operators, respectively, see e.g., [33]. In (27), I(ξ) denotes
the conditional Fisher information defined in e.g., (7), (11) and (14),
and C the correlation matrix defined in (24). The stochastic Cramér-
Rao bound is given by the inverse of I, see e.g., [33].

In practice, it is extremely costly to compute Eξ {I(ξ)} in (27),
and hence the approximation I ≈ I(ξ)|ξ=0 + C−1 is used where
the conditional Fisher information is calculated at the known
background. Note that this approximation is assymptotically unbiased
and converges in probability as γ →∞.

The Fisher information matrix I is extremely ill-conditioned and a
calculation of the Cramér-Rao bound for individual pixels ξi is virtually
impossible (and irrelevant) if the pixel resolution ∆x is far below the
resolution limit ∆x ¿ λ/2, cf., [13]. However, a principal parameter
analysis using the singular value decomposition (SVD) may be carried
out to identify the significant number of retrievable parameters, and
hence the resolution. The following notation will be employed

I(ξ)|ξ=0 + C−1 = UΣUT (28)

where U contains the singular vectors and Σ the singular values.
The principal parameters are defined by UTξ and the corresponding
Cramér-Rao bounds are given by the diagonal elements of Σ−1.

5. NUMERICAL EXAMPLES

5.1. High Loss Example

Consider the one-dimensional inverse scattering problem as described
in Section 2.1 and depicted in Fig. 1. A conditional Fisher information
analysis and related preconditioning was carried out for the linear,
exponential and arctangential parameter scalings as described in
Sections 2.2 and 3, and an a priori model and principal parameter
analysis as described in Section 4. The normalized bandwidth was
B = (ω2 − ω1)/ω0 = 4/3 (0 ≤ B ≤ 2) where ω0 is the center
frequency (ω0 = 2πf0 where f0 = 6 GHz in the examples below) and ω1

and ω2 the lower and upper frequency band limits, respectively. The
calculations were performed for a homogenous background with ε = 15
and σ/ω0 = 1.2 (in SI-units σSI = 0.4 S/m). Note that the conductivity
parameter has been scaled as σ/ω0 (where ω0 is the center frequency)
in order for the parameters ε and σ/ω0 to obtain similar sensitivity,
cf., [13]. The imaging domain was set to a = 15λ where λ denotes the
wavelength in the background medium at the upper frequency band
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limit ω2. The pixel resolution was ∆x = 0.1λ. The conditional Fisher
information employed is defined in (7).

In Fig. 3, the six subplots show the principal Cramér-Rao bound
(singular values) [Σ−1]n as defined in (28), plotted as a function
of resolution 2a/nλ for different regularization parameters γ0. The
resolution is defined here as the size of the spatial domain in
wavelengths (a/λ) divided by the number (n/2) of retrieved principal
parameters for ε and σ, respectively, corresponding to n singular values
[Σ]n in decreasing order. In Fig. 3, the regularization parameter
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Figure 3. Principal Cramér-Rao bound [Σ−1]n (in dB) as a function
of resolution 2a/nλ for a homogenous background with ε = 15 and
σ/ω0 = 1.2. Here γ0 denotes the regularization parameter and ∆ξε

(upper plots) and ∆ξσ (lower plots) the contrast levels for the scaled
ε- and σ-parameters at x = 6λ with ∆ε = ∆σ = 1, corresponding to
SNR = 35, 45 and 55 dB and linear (Lin.), exponential (Exp.) and
arctangential (Atan.) scaling, respectively.
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defined in (21) and (24) is given by γ = γ02N010−4 where γ0 ranges
from 10−3 to 102, and ∆ξε (upper plots) and ∆ξσ (lower plots) are the
contrast levels (17) through (19) for the scaled ε- and σ-parameters at
x = 6λ with ∆ε = ∆σ = 1, corresponding to a signal to noise ratio
SNR = 1

4N0
= 35, 45 and 55 dB and linear (Lin.), exponential (Exp.)

and arctangential (Atan.) parameter scalings, respectively. Note that
the scaled Fisher information (14) used in (28) is independent of the
noise strength N0, and hence motivates the scaling of γ with N0 as
above, see also (24).

In Fig. 3, it can be clearly seen the sharp resolution limit
at 2a/n = λ/2, beyond which reconstruction (estimation) becomes
virtually unfeasible, cf., also [13]. For a resolution limit not below
about 0.6λ and a signal to noise ratio SNR = 55 dB, the analysis
predicts that reconstruction is feasible and virtually independent of
the regularization constant if γ0 ≤ 1, i.e., the Cramér-Rao bound is
significantly below the required contrast levels ∆ξε and ∆ξσ ([Σ−1]n ¿
∆ξ2). On the other hand, with a signal to noise ratio SNR = 35 dB, a
regularization constant γ0 = 100 is required to constrain the Cramér-
Rao bound below the required contrast levels. In this case, the
singular values as a function of resolution have become perfectly flat,
indicating that the regularization has saturated, i.e., the regularization
has become so dominating that the only thing that can be retrieved is
the a priori information itself, i.e., the background parameters. Hence,
the analysis predicts that reconstruction is unfeasible for SNR = 35dB.

Next, a numerical implementation of the one-dimensional inverse
problem is considered with the linear, exponential and arctangential
scalings and preconditioning as defined in (12), (13), (15) and (16).
A priori model parameters for the linear scaling was; ε0i = 15
(background) and σ0i = 1.2 (background), for the exponential scaling;
αε = 1, ε0i = 14 (lower bound) and ασ = 1.2, σ0i = 0 (lower bound),
and for the arctangential scaling; εl = 14 (lower bound), εb = 15
(background), εu = 17 (upper bound) and σl = 0 (lower bound),
σb = 1.2 (background) and σu = 10σb (upper bound). The contrast
levels for the simulated objects was ∆ε = ∆σ = 1.

An inversion algorithm was implemented based on a quasi-
Newton algorithm using the BFGS formula and Golden section line
search, see e.g., [8], together with the gradient calculations that are
given by (4), (13), (15), (16) and (26) above. The solution to the
related direct and adjoint electromagnetic problems were based on an
implementation of the FDTD algorithm, see e.g., [30], where the spatial
resolution was 10 points per wavelength. A different spatial grid was
used for the generation of input data in order to avoid the “inverse
crime” [16, 31]. The signal to noise ratio was SNR = 1

4N0
= 35–
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Figure 4. Reconstruction for the one-dimensional inverse problem
with linear parameter scaling. The graphs show a reconstruction of
the parameters ε and σ/ω0 versus x/λ. The signal to noise ratio is
SNR = 35 or SNR = 55 dB and the regularization constant is γ0 = 1
or γ0 = 100. The true parameter values are shown as a dashed line,
where the homogenous background has values ε = 15 and σ/ω0 = 1.2
and ∆ε = ∆σ = 1.

55 dB, and artificial noise was added correspondingly prior to the
reconstruction.

In Figs. 4 through 6 are shown the numerical reconstructions with
linear, exponential and arctangential parameter scalings, respectively.
The graphs show a reconstruction of the parameters ε and σ/ω0 versus
x/λ. The signal to noise ratio is SNR = 35 or SNR = 55 dB and the
regularization constant is γ0 = 1 or γ0 = 100. The true parameter
values are shown as a dashed line.

The reconstruction results in Figs. 4 through 6 should be compared
and evaluated against the principal parameter analysis which was
discussed above and illustrated in Fig. 3. As was predicted by



422 Nordebo and Gustafsson

the principal parameter analysis, the inversion problem is feasible
(reconstruction works reasonably well) when the signal to noise ratio
is SNR = 55dB and is unfeasible (inversion is either unstable or
saturated) when SNR = 35 dB. Furthermore, with the higher signal
to noise ratio SNR = 55 dB, the behaviour of the inversion algorithm
was (as predicted) rather independent of the regularization constant
for γ0 ≤ 1. In conclusion, the principal parameter analysis worked well
as an indicator to whether the inverse problem was feasible or not, as
well as an indicator to a proper choice of regularization constant.

However, note also that the reconstruction of the parameter σ/ω0
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Figure 5. Reconstruction for the one-dimensional inverse problem
with exponential parameter scaling. The graphs show a reconstruction
of the parameters ε and σ/ω0 versus x/λ. The signal to noise ratio is
SNR = 35 or SNR = 55 dB and the regularization constant is γ0 = 1
or γ0 = 100. The true parameter values are shown as a dashed line,
where the homogenous background has values ε = 15 and σ/ω0 = 1.2
and ∆ε = ∆σ = 1.



Progress In Electromagnetics Research B, Vol. 16, 2009 423

0 2 4 6 8 10
14

15

16

17
(SNR=55 dB,  γ  =1)

(SNR=35 dB,  γ  =1)

(SNR=35 dB,  γ  =100)

(SNR=55 dB,  γ  =1)

(SNR=35 dB,  γ  =1)

(SNR=35 dB,  γ  =100)

σ

14

15

16

17

15

16

17

0 2 4 6 8 10

0 2 4 6 8 10 4 6 8 100 2

σ

σ

14

0 2 4 6 8 10 0 2 4 6 8 10

1

2

3

1

2

3

1

2

3

x / λ x / λ

0 0 

0 0 

0 0 

 ω0 

 ω0 

 ω0 

∋

∋

∋

Figure 6. Reconstruction for the one-dimensional inverse problem
with arctangential parameter scaling. The graphs show a
reconstruction of the parameters ε and σ/ω0 versus x/λ. The signal
to noise ratio is SNR = 35 or SNR = 55dB and the regularization
constant is γ0 = 1 or γ0 = 100. The true parameter values are shown
as a dashed line, where the homogenous background has values ε = 15
and σ/ω0 = 1.2 and ∆ε = ∆σ = 1.

has better quality than that of ε in this numerical example. This is
probably due to the fact that the parameter σ/ω0 has much higher
relative contrast than ε, i.e., ∆σ/σ = 1/0.12 is much larger than
∆ε/ε = 1/15. As should be expected, this behaviour was not predicted
by the principal parameter analysis above. The reason for this is
that the principal parameter Fisher information analysis is effectively
based on a linearization (first order differentials) about the known
background, and is therefore expected to be most reliable for weak
scattering problems, and do not take high contrast (nonlinear) effects
into account.
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As can be seen from the Figs. 4 through 6, the three scaling
methods performed rather similar in this numerical example. This may
be anticipated from the analysis above since there were no significant
differences in the calculated contrast levels ∆ξε and ∆ξσ between
the different scaling methods, i.e., the ratio ∆νi/αi was reasonable
small and the approximation (20) was valid. Hence, the parameter
values for the nonlinear exponential and arctangential scalings in this
numerical example are mostly active in a region where a linearization
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Figure 7. Principal Cramér-Rao bound [Σ−1]n (in dB) as a function
of resolution 2a/nλ for a homogenous background with ε = 15 and
σ/ω0 = 0.12. Here γ0 denotes the regularization parameter and ∆ξε

(upper plots) and ∆ξσ (lower plots) the contrast levels for the scaled
ε- and σ-parameters at x = 6λ with ∆ε = ∆σ = 1, corresponding to
SNR = 30, 40 and 50 dB and linear (Lin.), exponential (Exp.) and
arctangential (Atan.) scaling, respectively.
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is a reasonable approximation.

5.2. Low Loss Example

An advantage of using a nonlinear parameter scaling with lower (and
upper) parameter bounds is that it is a straightforward technique to
obtain a robust inversion algorithm that can avoid unphysical solutions
such as negative ε and σ values and serious parameter divergence
problems. This is particularly important when the algorithm is
working close to instability, such as with a low signal to noise ratio.

Another situation where the nonlinear scaling is useful is when
one of the parameters are very close to its lower (or upper) bound.

0 2 4 6 8 10
14

15

16

17

0

1

2

(SNR=50 dB,  γ  =1)

(SNR=30 dB,  γ  =1)

(SNR=30 dB,  γ  =100)

(SNR=50 dB,  γ  =1)

(SNR=30 dB,  γ  =1)

(SNR=30 dB,  γ  =100)

σ

14

15

16

17

15

16

17

0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 4 6 8 100 2

σ

σ

0

1

2

0

1

2

14

x / λ x / λ

0 0 

0 0 

0 0 

 ω0 

 ω0 

 ω0 
∋

∋

∋

Figure 8. Reconstruction for the one-dimensional inverse problem
with linear parameter scaling. The graphs show a reconstruction of
the parameters ε and σ/ω0 versus x/λ. The signal to noise ratio is
SNR = 30 or SNR = 50 dB and the regularization constant is γ0 = 1
or γ0 = 100. The true parameter values are shown as a dashed line,
where the homogenous background has values ε = 15 and σ/ω0 = 0.12
and ∆ε = ∆σ = 1.
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To illustrate this, another simulation is presented in Figs. 7 through
10, corresponding to a case with very low losses. Here, the principal
parameter analysis and numerical reconstruction is performed precisely
as above, except that the conductivity is σ/ω0 = 0.04η0/ω0 = 0.12 (in
SI-units σSI = 0.04 S/m).

A priori model parameters for the linear scaling was; ε0i = 15
(background) and σ0i = 0.12 (background), for the exponential scaling;
αε = 1, ε0i = 14 (lower bound) and ασ = 0.12, σ0i = 0 (lower bound),
and for the arctangential scaling; εl = 14 (lower bound), εb = 15
(background), εu = 17 (upper bound) and σl = 0 (lower bound),
σb = 0.12 (background) and σu = 100σb (upper bound). The contrast
levels for the simulated objects were ∆ε = ∆σ = 1, and the signal to
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Figure 9. Reconstruction for the one-dimensional inverse problem
with exponential parameter scaling. The graphs show a reconstruction
of the parameters ε and σ/ω0 versus x/λ. The signal to noise ratio is
SNR = 30 or SNR = 50 dB and the regularization constant is γ0 = 1
or γ0 = 100. The true parameter values are shown as a dashed line,
where the homogenous background has values ε = 15 and σ/ω0 = 0.12
and ∆ε = ∆σ = 1.
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noise ratio ranged between SNR = 30 and SNR = 50 dB.
Again, the principal parameter analysis together with the

calculated contrast levels ∆ξε and ∆ξσ in Fig. 7 should be used to
evaluate the numerical reconstructions in Figs. 8 through 10. As
predicted by the principal parameter analysis, the reconstruction with
linear parameter scaling as illustrated in Fig. 8 performs reasonable
well with the high signal to noise ratio SNR = 50dB (since [Σ−1]n ¿
∆ξ2), and it does not perform well with the low signal to noise ratio
SNR = 30 dB (since [Σ−1]n ≈ ∆ξ2

i ), i.e., the error variance is high,
and the conductivity parameter σ takes on unphysical negative values.

On the other hand, the numerical reconstructions with the
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Figure 10. Reconstruction for the one-dimensional inverse
problem with arctangential parameter scaling. The graphs show a
reconstruction of the parameters ε and σ/ω0 versus x/λ. The signal
to noise ratio is SNR = 30 or SNR = 50dB and the regularization
constant is γ0 = 1 or γ0 = 100. The true parameter values are shown
as a dashed line, where the homogenous background has values ε = 15
and σ/ω0 = 0.12 and ∆ε = ∆σ = 1.
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nonlinear exponential and arctangential scalings as illustrated in Figs. 9
and 10 actually behaves better than what would be expected from the
principal parameter analysis illustrated in Fig. 7. The explanation
for this is the fact that the principal parameter (Cramér-Rao bound)
analysis does not take into account the a priori information that
is inherent with the inclusion of a lower (or upper) bound on the
parameter values, as is done with the nonlinear parameter scalings.
Morover, this (nonlinear) effect becomes increasingly pronounced as
the background parameter values come closer to this lower (or upper)
bound.

6. SUMMARY AND CONCLUSIONS

In this paper, a Fisher information based Bayesian approach
is presented for analysis and design of the regularization and
preconditioning parameters used with gradient based inverse scattering
algorithms. In particular, a one-dimensional inverse problem is
considered where the permittivity and conductivity profiles are
unknown and the input data consist of the scattered field over a
certain bandwidth. A priori parameter modeling with linear, as
well as nonlinear exponential and arctangential parameter scalings is
treated and robust preconditioners are obtained by choosing the related
scaling parameters based on a Fisher information analysis of the known
background.

The Bayesian approach and a principal parameter (singular value)
analysis of the stochastic Cramér-Rao bound is used to investigate the
regularization that is necessary to achieve stable inversion, as well as to
predict the feasibility of achieving successful reconstruction in a given
problem set-up. In particular, the Tikhonov regularization scheme is
put into a Bayesian estimation framework. The principal parameter
Fisher information analysis is effectively based on a linearization (first
order differentials) about the known background, and is therefore
expected to be most reliable for weak scattering problems, and do
not take high contrast (nonlinear) effects into account.

A time-domain least-squares inversion algorithm based on a quasi-
Newton algorithm together with an FDTD-electromagnetic solver
has been employed in order to generate the numerical examples.
The numerical examples verify the principal parameter analysis by
considering low and high noise situations corresponding to feasible
and unfeasible inverse problem set-ups, respectively. In a low
noise situation, the behaviour of the inversion algorithm is typically
independent of the regularization constant if the constant is below
a certain limit which can be predicted by the principal parameter
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analysis. In a high noise situation, the inverse problem is typically
unfeasible (if the noise is high enough) and the regularization will
saturate the reconstruction, yielding the a priori known background
as an output. As expected, the use of nonlinear a priori parameter
models such as the exponential or arctangential scalings will in some
cases (when the background parameter values are close to their bounds)
yield inversion results that performs much better than what is indicated
by the Fisher information analysis. This is quite natural since the
Fisher information analysis does not take upper and lower parameter
bounds into account.

The Fisher information based principal parameter analysis
presented above is based solely on the known background, and
it constitutes hence only an indicator to predict the feasibility of
achieving successful reconstruction in a given problem set-up. As
expected, this indicator is not able to predict the behavior of the
algorithms when highly nonlinear effects are present such as with high
contrast situations or nonlinear parameter scalings. On the other hand,
the Fisher information based technique which is performed here using
a uniform background, could be straightforwardly extended to analyze
any known background, including high contrast objects.
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