Vol. 9
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-08
Synthesis of Sparse Cylindrical Arrays Using Simulated Annealing Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 9, 147-156, 2009
Abstract
In this paper, simulated annealing algorithm (SA) is applied to the synthesis of cylindrical conformal arrays in order to suppress the peaks of side lobes by acting on the elements' positions. There are multiple optimization constraints including the number of elements, aperture and minimum element spacing. A constraint matrix is designed to make the solution meet the restriction on the minima distance between elements, and the individual matrix which forms on the basis of constraint matrix is used to express array configurations. The SA does not act on the elements' positions directly but on the variables in a smaller solution space, this indirect description method makes the SA more computationally efficient. The simulation results confirm the great e±ciency and robustness of the proposed method.
Citation
Penghan Xie, Ke-Song Chen, and Zi-Shu He, "Synthesis of Sparse Cylindrical Arrays Using Simulated Annealing Algorithm," Progress In Electromagnetics Research Letters, Vol. 9, 147-156, 2009.
doi:10.2528/PIERL09051303
References

1. Chen, K., Z. He, and C. Han, "Synthesis of sparse planar arrays using modified real genetic algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1067-1073, 2007.
doi:10.1109/TAP.2007.893375

2. Lee, K. C., "Frequency-domain analyses of nonlinearly loaded antenna arrays using simulated annealing algorithms," Progress In Electromagnetics Research, Vol. 53, 271-281, 2005.
doi:10.2528/PIER04101501

3. Haupt, R. L., "Optimized element spacing for low sidelobe concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 266-268, 2008.
doi:10.1109/TAP.2007.913176

4. Chen, K., Z. He, and C. Han, "A modified real GA for the sparse linear array synthesis with multiple constraints," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2169-2173, 2006.
doi:10.1109/TAP.2006.877211

5. Lu, Z. B., A. Zhang, and X. Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004

6. Trucco, A., "Synthesizing asymmetric beam patterns," IEEE Journal of Oceanic Engineering, Vol. 25, No. 3, 347-350, 2000.
doi:10.1109/48.855383

7. Trucco, A., E. Omodei, P. Repetto, and B. Smith, "Synthesis of sparse planar arrays," Electronics Letters., Vol. 33, No. 22--23, 1834-1835, 1997.
doi:10.1049/el:19971261

8. Ferreira, J. A. and F. Ares, "Pattern synthesis of conformal arrays by the simulated annealing technique," Electronics Letters, Vol. 33, No. 14, 1187-1189, 1997.
doi:10.1049/el:19970838

9. Skolnik, M. I., G. Nemhauser, and J. W. Sherman, "Dynamic programming applied to unequally spaced arrays," IEEE Trans. Antennas Propag., Vol. 12, No. 1, 35-43, 1964.
doi:10.1109/TAP.1964.1138163

10. Trucco, A. and V. Murino, "Stochastic optimization of linear sparse arrays," IEEE Journal of Oceanic Engineering, Vol. 24, No. 7, 291-299, 1999.
doi:10.1109/48.775291

11. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, 1994.
doi:10.1109/8.299602

12. Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, No. 4598, 671-680, 1983.
doi:10.1126/science.220.4598.671

13. Jan, E. K. and A. Austeng, "Sparse cylindrical sonar arrays," IEEE Journal of Oceanic Engineering, Vol. 33, No. 2, 224-231, 2008.
doi:10.1109/JOE.2008.923553