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Abstract—In this paper, simulated annealing algorithm (SA) is
applied to the synthesis of cylindrical conformal arrays in order to
suppress the peaks of side lobes by acting on the elements’ positions.
There are multiple optimization constraints including the number of
elements, aperture and minimum element spacing. A constraint matrix
is designed to make the solution meet the restriction on the minima
distance between elements, and the individual matrix which forms on
the basis of constraint matrix is used to express array configurations.
The SA does not act on the elements’ positions directly but on the
variables in a smaller solution space, this indirect description method
makes the SA more computationally efficient. The simulation results
confirm the great efficiency and robustness of the proposed method.

1. INTRODUCTION

In recent years, the sparse array antenna has received more and more
attention because of its advantages, such as narrow scanning beams,
weak cross coupling between elements, low cost of antenna system,
etc., but it also has shortcomings. For example, it has higher peak
side lobe level [1, 3–5]. So how to suppress the peak side lobe level is
an important research problem in sparse array design. Sparse arrays
can be classified into two types: thinning arrays and sparse arrays.
Thinning arrays is formed by removing some elements from uniform
arrays, and the element spacing is integral times of original uniform
arrays. The elements of sparse arrays are randomly distributed on
the array surface, and the element spacing is indivisible [1, 4]. By
contrast, sparse arrays have more freedom than thinning arrays. Sparse
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arrays are facing nonlinear and complicate problems, and traditional
numerical computation methods can not get the desirable solution.
So more and more artificial intelligence methods are introduced in
the field, such as dynamic programming algorithm [9], simulated
annealing algorithm [2, 6–8, 10], particle swarm algorithm [5], genetic
algorithm [1, 3, 4, 11], etc. Compared with linear and planar arrays,
conformal cylindrical arrays have curved structure and are conformal
to the carrier, so the synthesis problem of this type of antenna array is
multidimensional and nonlinear problem, which is more difficult than
the synthesis of linear and planar array [5]. The conformal cylindrical
arrays which include the restriction on the number of elements, array
aperture and minimum element spacing, which will be discussed in
this paper. The peak side lobe level of cylindrical conformal arrays is
suppressed by acting on the elements’ position with the SA.

2. OPTIMIZATION MODEL

We assume an array of N elements located over a cylindrical surface
of radius R, as shown in Fig. 1. The angular region of the cylindrical
array extends from −θ to θ; the height region extends from −H to H;
and there are always elements on the four vertices to keep the aperture
constant. The optimization task is to search the optimal solution of
position vector ~D = [d1, d2, . . . , dN ]r to suppress the peak side lobe
level of cylindrical arrays, subject to the constraint of |dk−dl| ≥ dc > 0,
where dk is the location coordinates of the Kth element, and dc is
the design constraint of minimum element spacing. The optimization
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Figure 1. Diagram of a cylindrical array.
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model can be described as follow:




M in {SLL} = f(D)
s.t. − θ ≤ Re(di) ≤ θ
−H ≤ Im(di) ≤ H
|dk − dl| ≥ dc > 0
1 ≤ k, l ≤ N

(1)

In order to facilitate the operation of variables, let a matrix
F with Q rows and P column expresse the position vector ~D =
[d1, d2, . . . , dN ]r. Because the elements are located over the surface of
cylindrical array, the location coordinates can be determined by fixing
the height and azimuth of elements, namely di can be expressed by
θi + jhi. The real and image parts denote the azimuth angle and the
height respectively. If N = P ×Q, individual matrix F is a full matrix.
On the other hand, N < P × Q, F is a sparse matrix, and there are
Q× P −N elements to be thinned.

Individual matrix F can be expressed as follow:

F =




−θ + jH θ12 + jh12 · · · θ1P + jH
θ21 + jh21 θ22 + jh22 · · · θ2P + jh2P

...
...

...
...

−θ − jH θQ2 + jhQ2 · · · θ − jH


 (2)

The minimum element spacing is dc both in φ- and Z-directions.
It is easy to prove that the solution would meet the constraint of the
minimum element spacing. According to l = θ ×R, the restriction on
radian in φ-direction can be changed into restriction on azimuth angle,
namely |θi−θj | ≥ d0 > 0. Taking the real and image parts of individual
matrix F apart, make them meet the constraint of the minimum
element spacing respectively. Let the vector ~θ denote the elements of
the ith row of the individual matrix, assuming that θij = xj +(j−1)d0,
then:

~θr =




x1

x2 + d0

x3 + 2d0
...

xP + (P − 1)d0




=




x1

x2

x3
...

xP



+




0◦
d0

2d0
...

(P − 1)d0




= ~x+




0◦
d0

2d0
...

(P − 1)d0




(3)

If x1 ≤ x2 ≤ · · · ≤ xP , the transformation can meet the constraint
of minimum element spacing in φ-direction. The constraint matrix
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about azimuth angle can be expressed as follow:

CRe =




0 d0 · · · (P − 1)d0

0 d0 · · · (P − 1)d0
...

...
...

...
0 d0 · · · (P − 1)d0


 (4)

According to θP = xP + (P − 1)d0 ≤ θ, we can obtain xP ≤
θ− (P − 1) · d0, so the solution space is downsized from original [−θ, θ]
to [−θ, θ− (P − 1) · d0]. This indirect manner of individual description
allows the SA to search a smaller space.

We can obtain the constraint matrix about the image part of
individual matrix in a similar way:

CIm =




(Q− 1)dc (Q− 1)dc · · · (Q− 1)dc
...

...
...

...
dc dc dc dc

0 0 0 0


 (5)

The solution space is downsized from the original [−H, H] to
[−H, H − (Q− 1) · dc], and it is highly advantageous for SA to find an
excellent solution. The constraint matrix about the individual matrix
can be expressed as follow:

C = Cre + Cim

=




0+j(Q−1)dc d0+j(Q−1)dc · · · (P−1)d0+j(Q−1)dc

0+j(Q−2)dc d0+j(Q−2)dc · · · (P− 1)d0+j(Q−1)dc
...

...
...

...
0 d0 · · · (P−1)d0


 (6)

An individual matrix can be obtained by: we get a Q×P stochastic
matrix whose elements are among the range of [−θ, θ − (P − 1) · d0]
and reset the elements’ order of each row vector. Let the right number
be the biggest and gradually decrease toward the left, and then the
stochastic matrix is expressed as matrix notation R. Again get a
Q × P stochastic matrix whose elements are among the range of
[−H, H − (Q − 1) · dc]. Let the bottom number be the biggest and
gradually decrease toward the top, and the stochastic matrix can be
expressed as matrix notation I, then a template of individual matrix
can be obtained as follows:

F = R + jI + C (7)

We need to make some definitions during the SA process:
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Definition 1 : For a sparse matrix F, if the element of the pth row
qth column is thinned, the element of corresponding index matrix S is
settled as “0”, otherwise, “1”.

F =




−θ + jH 0 · · · θ + jH
θ21 + jh21 θ22 + jh22 · · · 0

...
...

...
...

−θ − jH θQ2 + jhQ2 · · · θ − jH


 (8)

The index matrix S should be:

S =




1 0 · · · 1
1 1 · · · 0
...

...
...

...
1 1 1 1


 (9)

Definition 2 : In the optimization process, if the individual matrix
is a full matrix, the constraint matrix equals C; if the individual matrix
is a sparse matrix, the corresponding elements of C are settled as “0”
according to the index matrix.

We choose isotropic elements in this paper, namely fmn(φ, θ) = 1,
Amn = 1, and the main lobe direction is chosen as (φ0, θ0). The array
factor for the cylindrical array is given by [5, 8, 13]:

F (φ, θ; φ0, θo) =
M−1∑

m=0

N−1∑

n=0

fmn(φ, θ)Amn exp {jk[R(sin θ0 cos(φ0−φmn)

− sin θ cos(φ− φmn)) + h(cos θ0 − cos θ)]} (10)

where k is the wave number, and φmn is the azimuth angle.
Assuming that u = sin θ cosφ, v = sin θ sinφ, u0 = sin θ0 cosφ0,

v0 = sin θ0 sinφ0, the array factor can be transformed as follows:

F (φ, θ; φ0, θo) =
M−1∑

m=0

N−1∑

n=0

exp{jk[R((u0−u) cosφmn+(v0−v) sin φmn)

+ h

(√
1− u2

0 − v2
0 −

√
1− u2 − v2

)]}
(11)

We define the fitness function as the maximum SLL in the entire
φ plane

fitness (D) = max
{∣∣∣∣

F (φ, θ, φ0, θ0)
FFmax

∣∣∣∣
}

(12)



152 Xie, Chen, and He

where FFmax is the peak of main beam, the region of φ and θ is valid
excluding the main beam.

The objective function is defined as:

f(D) = min{fitness (D)} (13)

3. SIMULATED ANNEALING ALGORITHM

The simulated annealing is a probabilistic method of optimization.
Initially, it aims to simulate the behavior of the molecules of a pure
substance during the slow cooling that results in the formation of
a perfect crystal [10]. This technique aims to solve the problems
similar to physical annealing process. It only needs the fitness
function’s information and adapts to poly-dimensional problems which
are discontinuous and have many locals.

3.1. The Advantages of the SA

1) Be able to solve the approximate solution of energy function which
is nonlinear and complicated;

2) Be able to overcome the dependence on initial value;
3) Be able to escape from local minima and find global minima;

3.2. The Steps of the SA

1) Set the initial parameters and construct the constraint matrix;
2) Construct an initial individual matrix F according to (7), and its

fitness function f(Fold) is evaluated.
3) Perform perturbation on the real part R and the image part I of

the individual matrix respectively, the iteration is given as:

Rnew = Rold + 0.01Prand

Inew = Iold + 0.01Prand
(14)

where Prand is a random matrix subjected to the normal
distribution. In this process, if its element is out of the feasible
region, a random number in the feasible region substitutes for it.
A new individual matrix Fnew can be obtained according to (7).
A new fitness function value f(Fnew) is then evaluated.

4) Judge the new individual matrix to be accepted or not according
to the Metropolise sampling principle: if f(Fnew) ≤ f(Fold) the
new individual matrix is accepted and Fold is replaced by Fnew.
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If f(Fnew) > f(Fold), the acceptance or rejection about the new
individual matrix depends on a probability, and “prob” defined as

prob = e

f(Fnew)− f(Fold)
T (15)

where T is called “temperature” in the SA. A random number r
in the range [0, 1] is generated. If r < prob, the new individual
matrix is accepted. Otherwise it is rejected. This procedure is
for the purpose of reducing the chance of getting stuck in local
solutions [2, 12].

5) To avoid losing the current best solution due to accepting new
solution by probability, set a variable to preserve the current best
solution.

6) If the acceptance numbers or the rejection numbers exceed the
given number, the temperature is lowered. The temperature is
chosen to decay exponentially with time: Ti+1 = aTi for some
a < 1 in this paper.

7) When T is less than a appointed number Tter, the algorithm is
end.

4. SIMULATION RESULTS

Supposing that the radius of cylindrical array is 5λ, and the height is
2λ, where λ is the working wavelength, θ = 30, the radiation pattern
in the u and v-region (0 ≤ u, v ≤ 1) is sampled 50 × 50 points. Two
simulation results are listed as follows.

Table 1. Individual matrix of best array under the condition of
P ×Q = N .

1 2 3 4 5 6 7 8 9

1

2

3

−28.17

−30.00

−30.00

−22.41

−21.51

−21.77

−16.40

−15.46

−15.82

−10.13

−9.38

−10.06

−3.87

−3.62

−3.76

2.16

2.63

3.04

7.94

8.45

8.90

14.60

14.22

15.12

30.00

20.99

30.00

−1.00

−0.34

1.00

−0.74

−0.23

0.310.26

−0.29

−0.89−0.88

−0.12

0.470.47

−0.05

−0.63−0.77

−0.21

0.290.350

−0.26

−0.82−0.97

−0.43

0.281.00

−0.40

−1.00

1) Let N = 27, P = 9, Q = 3, namely the individual matrix is a
full matrix. The minimum elements space is dc = 0.5λ, and the basic
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Figure 2. Radiation pattern of
best array.

0 5 10 15 20 25 30 35 40 45 50

0

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

u

fai 0
fai 45
fai90ra

d
ia

ti
o
n
 p

at
te

rn
 (

d
B

)

Figure 3. Radiation pattern in 3
tangent planes.
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Figure 4. Result array’s config-
uration.
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Figure 5. Radiation pattern of
best array.

parameters of the SA are chosen as follow: T = 200, a = 0.95, Tter =
0.5. Table 1 shows the individual matrix of best array; Fig. 2 shows
the far-field radiation pattern of the best array; and its peak side lobe
level is −13.124 dB in the entire φ plane. Fig. 3 shows the far-field
radiation pattern in φ = 0, φ = 45 and φ = 90 planes. The element
configuration of the best array is shown in Fig. 4.

2) Let N = 25, P = 9, Q = 3. Unlike Simulation 1), two
elements of individual matrix are randomly selected to be thinned.
The minimum element spacing and the basic parameters of the SA
are chosen the same as 1). The optimal solution of this simulation
is presented in Table 2 and its peak side lobe in the entire φ plane is
−14.147 dB. Figs. 5 and 6 show the radiation pattern of the result array
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Table 2. Individual matrix of best array under the condition of
P ×Q < N .

1 2 3 4 5 6 7 8 9

1

2

3

−30.00

−30.00

30.00

30.00

0
−15.7 −9.7 −3.97 2.84

0
16.43

−29.06 −21.59 −15.71 −9.94 −4.12 1.67 8.39 14.70 21.59

−23.27 −16.42 −10.67 −4.67 1.38 8.35 14.62

1.00

−0.24

−1.00−0.94

−0.41

0.24

−0.86

−0.36

−0.91

−0.35

0.300.29

−0.24

−0.77−0.90

−0.27

0.29

−0.92

−0.35

0.29

−0.47

−0.98−1.00

−0.36

1.00

fai 0_null
fai 45_null
fai 90_null
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Figure 6. Radiation pattern in 3
tangent planes.
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Figure 7. Result array’s config-
uration.

and the radiation pattern in φ = 0, φ = 45, φ = 90 planes respectively.
The element configuration of the result array is shown in Fig. 7.

5. CONCLUSION

The synthesis of sparse cylindrical arrays with multiple constraints
exhibits some challenges related to the control of the side lobes. In
this paper, we let a matrix express a array configuration, and the
minimum element spacing is transformed into constraint matrix. This
transformation makes the simulation easier and the solution space
smaller, so this method makes the SA more computationally efficient.
Future work will br mainly aimed at the model of cylindrical conformal
arrays. More complicated models including directivity of elements and
cross coupling between elements should be considered.
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