1. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, John Wiley and Sons, 2001.
doi:10.1002/0471224758
2. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques,, Vol. 35, No. 3, 260-267, 1987.
doi:10.1109/TMTT.1987.1133637
3. Shih, Y. C., "Broadband characterization of conductor-backed coplanar waveguide using accurate on-wafer measurement techniques," Microwave Journal, Vol. 34, No. 4, 95-105, 1991.
4. Fang, S. J. and B. S. Wang, "Analysis of asymmetric coplanar waveguide with conductor backing," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 2, 238-240, 1999.
doi:10.1109/22.744300
5. Karpuz, C. and A. Gorur, "Effect of upper shielding and conductor backing on quasi static parameters of asymmetric coplanar waveguides," Int. J. RF and Microwave CAE, Vol. 9, 394-402, 1999.
6. Ghione, G. and C. U. Naldi, "Parameters of coplanar waveguides with lower ground plane," Electronic Letters, Vol. 19, No. 18, 734-735, 1983.
doi:10.1049/el:19830500
7. Cheng, K. K. M. and J. K. A. Everard, "A new technique for the quasi-TEM analysis of conductor-backed coplanar waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, 1589-1592, 1993.
doi:10.1109/22.245682
8. Shih, Y. C. and T. Itoh, "Analysis of conductor-backed coplanar waveguide," Electronic Letters, Vol. 18, No. 12, 538-540, 1982.
doi:10.1049/el:19820365
9. Neto, A. G., C. S. D. Rocha, D. Bajon, and H. Baudrand, "Analysis of the conductor-backed coplanar waveguide by an alternative formulation of the transverse resonance technique," SBMO/IEEE MTT-S Int., 851-855, 1995.
doi:10.1109/SBMOMO.1995.509726
10. Hotta, M., Y. Qian, and T. Itoh, "Efficient FDTD analysis of conductor-backed CPW's with reduced leakage loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1585-1587, 1999.
doi:10.1109/22.780412
11. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Analysis of conductor-backed coplanar waveguides using adaptive-network-based fuzzy inference system models," Microwave and Optical Technology Letters, Vol. 51, No. 2, 439-455, 2009.
doi:10.1002/mop.24059
12. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Transactions on Systems Man and Cybernetics, Vol. 23, No. 3, 665-685, 1993.
doi:10.1109/21.256541
13. Jang, J.-S. R., C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, 1997.
14. Ozer, S., K. Guney, and A. Kaplan, "Calculation of the characteristic impedance and effective dielectric constant of coplanar waveguide with the use of fuzzy inference systems," Proc. of 8th TAINN'99, Istanbul, Turkey, 187-196, 1999.
15. Tayarani , M. and Y. Kami, "Qualitative analysis in engineering electromagnetics: An application to general transmission lines," IEICE Trans. on Electronics, Vol. E84C, No. 3, 364-375, 2001.
16. Miraftab, V. and R. R. Mansour, "Computer-aided tuning of microwave filters using fuzzy logic," IEEE MTT-S Digest, 1117-1120, 2002.
17. Ubeyli, E. D. and I. Guler, "Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of microshield lines with practical cavity sidewall profiles," Neurocomputing, Vol. 70, No. 1--3, 196-204, 2006.
18. Rahouyi, E. B., J. Hinojosa, and J. Garrigos, "Neurofuzzy modeling techniques for microwave components," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 72-74, 2006.
doi:10.1109/LMWC.2005.863245
19. Miraftab, V. and R. R. Mansour, "EM-based microwave circuit design using fuzzy logic techniques," IEE Proc. Microwave Antennas Propag., Vol. 153, No. 6, 495-501, 2006.
doi:10.1049/ip-map:20050190
20. Hinojosa, J. and G. Dome'nech-Asensi, "Space-mapped neuro-fuzzy optimization for microwave device modeling," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1328-1334, 2007.
doi:10.1002/mop.22460
21. Hinojosa, J., G. Dome'nech-Asensi, and J. Martı'nez-Alajarı'n, "Development of VHDL-AMS neuro-fuzzy behavioral models for RF/microwave passive components," Int. J. RF and Microwav CAE, Vol. 17, No. 3, 335-344, 2007.
doi:10.1002/mmce.20228
22. Koziel, S. and J. W. Bandler, "A space-mapping approach to microwave device modeling exploiting fuzzy systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2539-2547, 2007.
doi:10.1109/TMTT.2007.909605
23. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Adaptive neuro-fuzzy models for the quasi-static analysis of microstrip line," Microwave and Optical Technology Letters, Vol. 50, No. 5, 1191-1196, 2008.
doi:10.1002/mop.23322
24. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neurofuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208
25. Gaoua, S., L. Ji, Z. Cheng, F. A. Mohammadi, and M. C. E. Yagoub, "Fuzzy neural-based approaches for e±cient RF/microwave transistor modeling," Int. J. RF and Microwave CAE, Vol. 19, No. 1, 128-139, 2009.
doi:10.1002/mmce.20323
26. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, No. 4598, 671-680, 1983.
doi:10.1126/science.220.4598.671
27. Goldberg, D., Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, Addison-Wesley, 1989.
28. Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
29. Dennis, J. E., Nonlinear Least-Squares, State of the Art in Numerical Analysis, 269-312, Academic Press, 1977.
30. Marquardt, D. W., "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math., Vol. 11, 431-441, 1963.
doi:10.1137/0111030
31. Zeland Software Inc., IE3D, , Version 12.12, www.zeland.com., 2007.