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Abstract—A method based on adaptive-network-based fuzzy infer-
ence system (ANFIS) is presented for the analysis of conductor-
backed asymmetric coplanar waveguides (CPWs). Four optimization
algorithms, hybrid learning, simulated annealing, genetic, and least-
squares, are used to determine optimally the design parameters of the
ANFIS. The results of ANFIS models are compared with the results of
conformal mapping technique, a commercial electromagnetic simula-
tor IE3D, and the experimental works realized in this study. There is
very good agreement among the results of ANFIS models, quasi-static
method, IE3D, and experimental works. The proposed ANFIS models
are not only valid for conductor-backed asymmetric CPWs but also
valid for conductor-backed symmetric CPWs.

1. INTRODUCTION

Conductor-backed coplanar waveguide (CPW) provides superior
mechanical strength and heat sinking capabilities than conventional
CPWs in designing microwave integrated circuits (MICs). They have
several other advantages such as low dispersion, high flexibility in the
design of characteristic impedance, and easy connection to the shunt
lumped elements or devices [1–5]. CPWs backed with a conductor
also allow easy implementation of mixed coplanar/microstrip circuits,
reduce radiation effects, and raise effective permittivity. These
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advantages make conductor-backed CPWs ideally suited for MIC as
well as monolithic MIC (MMIC) applications [1–11].

Several researchers have analyzed conductor-backed CPWs by
using quasi-static approximations [1–7]. Most of them have used
conformal mapping technique (CMT) to calculate the characteristic
parameters of conductor-backed CPWs [1–5]. In practice, asymmetric
CPWs are more useful in some particular applications. In 1999,
the asymmetric CPW backed with a conductor has been analyzed
by using CMT [4]. The effect of the presence of upper shielding
and conductor-backing on the quasi-static parameters of asymmetric
CPWs was discussed in [5]. The quasi-static spectral domain approach
(SDA) was also used for the analysis of conductor-backed CPWs [6, 7].
On the other hand, dispersion characteristics of conductor-backed
CPWs have been reported in [8–10] with the use of full-wave analysis
methods. In these studies, full-wave SDA [8], alternative formulations
of the transverse resonance technique [9] and two-dimensional finite-
difference time-domain method [10] were used for the calculation of
the dispersion characteristics of conductor-backed CPWs. In [11],
models based on the adaptive-network-based fuzzy inference system
(ANFIS) [12, 13] were proposed for the quasi-static analysis of
conductor-backed symmetric CPWs. Each of methods proposed in
the literature [1–11] has its specific advantages and disadvantages.

The ANFIS is a class of adaptive networks which are functionally
equivalent to fuzzy inference system (FIS). The FIS is a popular
computing framework based on the concepts of fuzzy set theory, fuzzy
if-then rules, and fuzzy reasoning. It is a very powerful approach for
building complex and nonlinear relationship between a set of input
and output data [11, 14–25]. It can be trained with no need for the
expert knowledge usually required for the standard fuzzy logic design.
Both numerical and linguistic knowledge can be combined into a fuzzy
rule base by employing fuzzy methods. Fuzzy membership functions
(MFs) can be tuned optimally by using optimization algorithms. Other
advantages of the ANFIS include its nonlinear ability, its capacity for
fast learning, and its adaptation capability. Because of these attractive
features, in this paper ANFIS models are used for the analysis of
conductor-backed asymmetric CPWs. The proposed ANFIS models
are not limited to the calculation of the characteristic parameters of
conductor-backed asymmetric CPWs. These models can easily be
applied to other microwave problems. Accurate, fast, and reliable
ANFIS models can be developed from measured/simulated microwave
data. Once developed, these ANFIS models can be used in place of
computationally intensive numerical models to speed up microwave
devices design. The ANFIS structure can also be implemented in real
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time by using state-of-the art hardware devices, such as FPGAs (Field
Programmable Gate Array). In this way, the computation time of the
system is limited only by the response time of the FPGA, which is in
the order of a few microseconds. A prominent advantage of ANFIS
computation is that, after proper training, an ANFIS completely
bypasses the repeated use of complex iterative processes for new cases
presented to it. Thus, the ANFIS is very fast after training. Since the
ANFIS models presented in this paper have high accuracy and require
no complicated mathematical functions, they can be very useful for
the development of fast CAD algorithms. These CAD models, capable
of accurately predicting the characteristic parameters of conductor-
backed asymmetric CPWs, are also very useful to microwave engineers.

The main aims of this paper are

• to present an efficient alternative to the previous methods
for calculating the effective permittivities and characteristic
impedances of both symmetric and asymmetric CPWs backed
with a conductor by using the ANFIS architecture;

• to train the ANFIS by hybrid learning (HL) algorithm [12, 13],
simulated annealing (SA) [26] algorithm, genetic algorithm
(GA) [27, 28], and least-squares (LSQ) algorithm [29, 30];

• to determine the most appropriate ANFIS model in calculating
the characteristic parameters of conductor-backed CPWs; and

• to compare the results of ANFIS models with the results of
CMT [5], a full-wave electromagnetic simulator IE3D [31], and
experimental works realized in this study.

2. CHARACTERISTIC PARAMETERS OF
CONDUCTOR-BACKED ASYMMETRIC CPWs

The cross-section of a conductor-backed asymmetric CPW is depicted
in Fig. 1. In this figure, W represents the central strip width, s1 and
s2 represent the slot widths, G shows the distance between the surface
ground planes, and h indicates the thickness of the dielectric material

Figure 1. Cross-section of a conductor-backed asymmetric CPW.
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with relative permittivity εr. Using the quasi-static approximations,
the effective permittivities (εeff ) and characteristic impedances (Z0) of
conductor-backed asymmetric CPWs can be written as [5];

εeff = 1 + (εr − 1) · K(k1)/K(k′1)
K(k0)/K(k′0) + K(k1)/K (k′1)

(1)

and
Z0 =

120π√
εeff

1
K(k0)/K(k′0) + K(k1)/K(k′1)

(2)

where K(ki) and K(k′i) are the complete elliptic integrals of the first
kind with the modulus of ki and k′i. k′i is the complementary modulus
of ki and equals to (1 − k2

i )
1/2. The modulus ki are defined in terms

of geometrical dimensions of conductor-backed asymmetric CPWs as
given in [5]:

k0 =

√
W · (W + s1 + s2)

(W + s1) · (W + s2)
(3)

and

k1 =

√
W ′ · (W ′ + s′1 + s′2)

(W ′ + s′1) · (W ′ + s′2)
(4)

with

W ′ = e−wπ/2h(ewπ/h − 1) (5)

s′1 = e−(w+2s1)π/2h(es1π/h − 1) (6)

s′2 = −e−(w+2s2)π/2h(e−s2π/h − 1) (7)

3. APPLICATION OF ANFIS TO THE ANALYSIS OF
CONDUCTOR-BACKED ASYMMETRIC CPWs

The FIS forms a useful computing framework based on the concepts of
fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The ANFIS
is a class of adaptive networks which are functionally equivalent to
FISs [12, 13]. The selection of the FIS is the major concern in the
design of an ANFIS. In this paper, the first-order Sugeno fuzzy model
is used to generate fuzzy rules from a set of input-output data pairs.
Among many FIS models, the Sugeno fuzzy model is the most widely
applied one for its high interpretability and computational efficiency,
and built-in optimal and adaptive techniques.

The ANFIS architecture used in this paper for computing the
effective permittivities and characteristic impedances of conductor-
backed asymmetric CPWs is illustrated in Fig. 2, in which a circle
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Figure 2. Structure of the ANFIS models.

indicates a fixed node, whereas a rectangular indicates an adaptive
node. For the ANFIS, the inputs are εr, W/G , G/h, and s1/s2, and the
output is the effective permittivity (εeff ) or characteristic impedance
(Z0) of conductor-backed asymmetric CPWs.

The accuracy of a properly trained ANFIS depends on the
accuracy and the effective representation of the data used for its
training. The training data sets used in this work are obtained by
using CMT [5]. 1128 data sets are used to train the ANFIS models.
Training data sets are in the range of 2 ≤ εr ≤ 22, 0.01 ≤ W/G ≤ 1.6,
0.01 ≤ G/h ≤ 10, and 0.1 ≤ s1/s2 ≤ 1.0. 252 data sets, which are
completely different from training data sets, are used to test the ANFIS
models.

In the design of ANFIS, MFs that can have a strong influence
on the behavior of fuzzy system for a particular problem should be
optimally determined. However, no common approach is available
for determining these functions. A careful determination of MFs
has to be performed in each problem. In some cases, they are
attained subjectively as a model for human concepts. In other cases,
they are based on statistical or/and empirical distributions, heuristic
determination, reliability with respect to some particular problem, or
theoretical demands. In this paper, MFs are selected heuristically and
verified empirically. Therefore, the optimal fuzzy MF configuration
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which gives the best result is chosen for the calculation of the effective
permittivities and characteristic impedances of asymmetric CPWs
backed with a conductor.

In this paper, the number of MFs for the inputs is determined as 3.
So, the number of fuzzy if-then rules for ANFIS is 81 (3×3×3×3 = 81)
as in the following equation:

Rule 1 : if εr is M 11 and W
G is M21 and G

h

is M31 and s1
s2

is M41 then B1 = C1

(
εr,

W
G , G

h , s1
s2

)

Rule 2 : if εr is M 11 and W
G is M21 and G

h

is M31 and s1
s2

is M42 then B2 = C2

(
εr,

W
G , G

h , s1
s2

)

Rule 3 : if εr is M 11 and W
G is M21 and G

h

is M31 and s1
s2

is M43 then B3 = C3

(
εr,

W
G , G

h , s1
s2

)

Rule 4 : if εr is M 11 and W
G is M21 and G

h

is M32 and s1
s2

is M41 then B4 = C4

(
εr,

W
G , G

h , s1
s2

)

...
...

...
...

...
...

...
...

...
...

Rule 81: if εr is M 13 and W
G is M23 and G

h

is M33 and s1
s2

is M43 then B81 = C81

(
εr,

W
G , G

h , s1
s2

)

(8)

where Mij denotes the jth MF of the input i, Bk denotes the output of
the kth rule, and Ck is the kth output MF with i = 1, 2, 3, 4; j = 1, 2, 3;
and k = 1, 2, 3, . . . , 81. In this paper, the input MFs are all generalized
bell type;

Mij (ui) =
1

1 +
∣∣∣ui−bij

aij

∣∣∣
2cij

(9)

where {aij , bij , and cij} is the parameter set that changes the shapes
of the input MFs, and ui is the input variables. The output MFs are
all linear type

Bk = Ck

(
εr,

W

G
,
G

h
,
s1

s2

)

= dk1 (εr) + dk2

(
W

G

)
+ dk3

(
G

h

)
+ dk4

(
s1

s2

)
+ dk5 (10)

where dk is the fitting parameters that characterize the shapes of the
output MFs. The parameters {aij , bij , and cij} and dk are referred to
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as the premise and consequent parameters, respectively. It is clear from
Eq. (9) that the generalized bell MF is specified by three parameters.
Therefore, ANFIS models used here contain a total of 441 fitting
parameters, of which 36 (3 × 3 + 3 × 3 + 3 × 3 + 3 × 3 = 36) are
the premise parameters and 405 (5 × 81 = 405) are the consequent
parameters.

The output of the network is the weighted average of the individual
rule outputs. The weighting factor wk of each rule is computed by
evaluating the membership expressions in the antecedent of the rule.
This is accomplished by first converting the input values to fuzzy
membership values by utilizing the input MFs and then applying “and”
operator to these membership values. The “and” operator corresponds
to the multiplication of input membership values. Hence, the weighting
factors of the rules are calculated as follows:

w1 = M11 (εr) M21

(
W
G

)
M31

(
G
h

)
M41

(
s1
s2

)

w2 = M11 (εr) M21

(
W
G

)
M31

(
G
h

)
M42

(
s1
s2

)

w3 = M11 (εr) M21

(
W
G

)
M31

(
G
h

)
M43

(
s1
s2

)

w4 = M11 (εr) M21

(
W
G

)
M32

(
G
h

)
M41

(
s1
s2

)

...
...

...
...

...
...

w81 = M13 (εr) M23

(
W
G

)
M33

(
G
h

)
M43

(
s1
s2

)

(11)

Once the weighting factors are obtained, the output of the network
can be found by calculating the weighted average of the individual
rule outputs. So the single node in the fifth layer calculates the overall
output as the summation of all incoming signals, which is written as:

F =

81∑
k=1

wkBk

81∑
k=1

wk

=
81∑

k=1

w̄kCk (12)

where w̄k is the normalized weighting factor of each rule.
The main objective of the ANFIS is to optimize the parameters

of the fuzzy system parameters by applying an optimization algorithm
using input-output data sets. The parameter optimization is done in
a way such that the error measure between the target and the actual
output is minimized. During the optimization process of the ANFIS,
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the premise parameters in the layer 1 and the consequent parameters in
the layer 4 are tuned until the desired response of the FIS is achieved.
In this paper, four different optimization algorithms, HL, SA, GA, and
LSQ, are used to identify the parameters of ANFIS.

It is well known that the ANFIS has one output. For this reason,
two separate ANFIS models with identical structure are used for
computing the effective permittivities and characteristic impedances of
conductor-backed asymmetric CPWs. Although the number of inputs,
input values, the number of MFs, and the types of MFs are the same
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Figure 3. Comparison results of ANFIS model, CMT [5] and
IE3D [31] for the characteristic parameters of conductor-backed
asymmetric CPWs with εr = 10, W = 400µm, and h = 750µm (a)
Effective permittivity and (b) Characteristic impedance.



Progress In Electromagnetics Research M, Vol. 8, 2009 9

Table 1. Training and test RMS errors of ANFIS models.

RMS Errors in Training RMS Errors in Test Optimization 

Algorithms εeff Z0 ( ) εeff Z0 ( )

HL 0.019 0.193 0.029 0.244 

SA 0.077 5.460 0.101 4.767 

GA 0.413 6.756 0.454 7.436 

LSQ 3.409 4.646 3.443 6.304 

Ω Ω

Table 2. Comparison results of ANFIS model, experimental works,
CMT [5], and IE3D [31] for characteristic impedances of conductor-
backed symmetric CPWs with εr = 10.2 and h = 1270µm.

Geometrical dimensions (µm) Characteristic impedances ( )

Strip width 

(W)

Slot width 

(s1)
Measured CMT [5] IE3D [31] ANFIS 

800 950 49.73 49.87 49.87 49.59 

1000 1000 50.01 50.40 50.40 50.23 

900 1000 50.03 49.67 49.67 50.59 

1100 1050 49.73 49.93 49.92 49.45 

Ω

for each ANFIS, the values of premise and consequent parameters for
each ANFIS are different. Hence, the shape of each MF of the ANFIS
used for computing the effective permittivities is different from the
corresponding MF of the ANFIS used for computing the characteristic
impedances.

4. RESULTS AND CONCLUSIONS

In this paper, the characteristic parameters, effective permittivities
and characteristic impedances, of conductor-backed asymmetric CPWs
are computed by using ANFIS models. Four different optimization
algorithms, HL, SA, GA, and LSQ, are used to determine the optimum
values of the fuzzy system parameters and adapt the FISs. The training
and test RMS errors of ANFIS models are given in Table 1. When the
performances of ANFIS models are compared with each other, the best
results are obtained from the models trained with the HL algorithm.

The effective permittivity and characteristic impedance test
results of ANFIS models trained by the HL algorithm for conductor-
backed asymmetric CPWs with εr = 10, W = 400 µm, and h = 750 µm
are compared with the results of CMT [5] and IE3D [31] in Figs. 3(a)
and 3(b), respectively. Comparison is made for a wide range of s1/s2
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and G/h ratio. It is clear from Figs. 3(a) and 3(b) that the results of
ANFIS models are in very good agreement with the results of CMT
and IE3D. This very good agreement confirms the validity of ANFIS
method for the quasi-static analysis of conductor-backed asymmetric
CPWs.

The ANFIS models proposed in this work can also be used for the
analysis of conductor-backed symmetric CPWs when the slot width
s1 equals to s2. In this paper, four different symmetric conductor-
backed CPWs are fabricated on RT/duroid laminates by using the
printed circuit board (PCB) excavation technique. The characteristic
impedances of these CPWs are calculated from the measured S-
parameters. These characteristic impedances are compared with the
results of ANFIS model trained by the HL algorithm, CMT [5], and
IE3D [31] in Table 2. It is clear that ANFIS results agree quite well
with the results of CMT, IE3D, and measured work.

As a consequence, ANFIS models are presented to accurately
calculate the effective permittivities and characteristic impedances of
both symmetric and asymmetric conductor-backed CPWs. Different
optimization algorithms, HL, SA, GA, and LSQ, are used to identify
the parameters of ANFIS. The best results are obtained from the
ANFIS trained by HL algorithm. The close agreement is satisfied
between the theoretical and experimental results. The ANFIS offers
an accurate and efficient alternative to previous methods for the
calculation of the effective permittivities and characteristic impedances
of conductor-backed CPWs.
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