Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-21
Diffraction of Electromagnetic Plane Wave from a Slit in PEMC Plane
By
Progress In Electromagnetics Research M, Vol. 8, 67-77, 2009
Abstract
In the present investigation, diffraction from a slit in perfectly electromagnetic conducting (PEMC) plane has been studied. Both the E- and H-polarization are considered and the method of analysis is Kobayashi Potential (KP). The mathematical formulation involves dual integral equations (DIEs). These DIEs are solved by using the discontinuous properties of Weber-Schafheitlin's integral. The resulting expressions, finally, reduce to matrix equations. These are then used to compute the values of unknown expansion coefficients. Numerical results are presented for different parameters of interest especially the dependance of co-polarized and cross-polarized components on the admittance parameter.
Citation
Amjad Imran, Qaisar Naqvi, and Kohei Hongo, "Diffraction of Electromagnetic Plane Wave from a Slit in PEMC Plane," Progress In Electromagnetics Research M, Vol. 8, 67-77, 2009.
doi:10.2528/PIERM09042207
References

1. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

2. Lindell, I. V., Differential Forms in Electromagnetics, Wiley-Interscience, 2004.

3. Lindell, I. V. and A. H. Sihvola, "Realization of the PEMC boundary," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 9, 3012-3018, Sep. 2005.
doi:10.1109/TAP.2005.854524

4. Jancewics, B., "Plane electromagnetic wave in PEMC,", arXiv:physics/050823.
doi:10.1109/TAP.2005.854524

5. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1569-1576, 2006.
doi:10.1163/156939306779292390

6. Ruppin, R., "Scattering of electromagnetic radiation by a perfectly electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

7. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfectly electromagnetic conductor circular cylinder coated with a metamaterial having negative permittivity and/or permeability," Opt. Commun., Vol. 281, 5664-5670, 2008.
doi:10.1016/j.optcom.2008.09.011

8. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a two dimnsional perfectly electromagnetic conductor (PEMC) strip and PEMC grating simulating by circular cylinders," Opt. Commun., Vol. 281, 4211-4218, 2008.
doi:10.1016/j.optcom.2008.05.022

9. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering of two or more incident plane wave by a perfect electromagnetic conductor cylinder coated with a metamaterial," Progress In Electromagnetics Research B, Vol. 10, 75-90, 2008.
doi:10.2528/PIERB08083101

10. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from parallel perfect electromagnetic conductor cylinders of circular cross-sections using an iterative procedure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 987-1003, 2008.
doi:10.1163/156939308784150209

11. Hamid, A.-K. and F. R. Cooray, "Scattering from a perfect electromagnetic conducting spheroid," ICTTA 2008, 1-6, April 7-11, 2008.

12. Illahi, A., M. Afzaal, and Q. A. Naqvi, "Scattering of dipole field by a perfectly electromagnetic conductor cylinder," Progress In Electromagnetics Research Letters, Vol. 4, 43-53, 2008.
doi:10.2528/PIERL08051601

13. Illahi, A. and Q. A. Naqvi, "Scattering of an arbitrarily oriented dipole field by an infinite and finite length PEMC circular cylinder," Central European Journal of Physics, in press, 2009.

14. Hehl, F. W. and Y. N. Obukhov, "Linear media in classical electrodynamics and the post constraint," Phys. Lett. A, Vol. 334, 249-259, 2005.
doi:10.1016/j.physleta.2004.11.038

15. Obukhov, Y. N. and F. W. Hehl, "Measuring a piecewise constant axion field in classical electrodynamics," Phys. Lett. A, Vol. 341, 357-365, 2005.
doi:10.1016/j.physleta.2005.05.006

16. Kobayashi, I., "Darstellung eines potentials in zylindrischen koordinaten, das sich auf einer ebene innerhalb und ausserhalb einer gewissen kreisbegrenzung verschiedener grenzbedingung unterwirft,", Sci. Rep., Tohoku Univ., Ser. 1, No. 20, 197-212, 1931.

17. Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, 1966.

18. Hongo, K., "Diffraction of electromagnetic plane wave by a slit," Trans. Inst. Electronics and Comm. Engineers in Japan, Vol. 55-B, No. 6, 328-330, 1972.

19. Hongo, K. and H. Serizawa, "Diffraction of electromagnetic plane wave by a rectangular plate and a rectangular hole in the conducting plate," IEEE Trans. on Antennas and Propagation, Vol. 47, No. 6, 1029-1041, June 1999.
doi:10.1109/8.777128

20. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of plane wave by two parallel slits in an infinitely long impedance plane using the method of kobayashi potential," Progress In Electromagnetics Research, Vol. 63, 107-123, 2006.
doi:10.2528/PIER06042601

21. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

22. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of electromagnetic plane wave by an impedance strip," Progress In Electromagnetics Research, Vol. 75, 303-318, 2007.
doi:10.2528/PIER07053104

23. Magnus, W., F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Spinger-Verlag.