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Abstract—In the present investigation, diffraction from a slit
in perfectly electromagnetic conducting (PEMC) plane has been
studied. Both the E- and H-polarization are considered and the
method of analysis is Kobayashi Potential (KP). The mathematical
formulation involves dual integral equations (DIEs). These DIEs are
solved by using the discontinuous properties of Weber-Schafheitlin’s
integral. The resulting expressions, finally, reduce to matrix equations.
These are then used to compute the values of unknown expansion
coefficients. Numerical results are presented for different parameters of
interest especially the dependance of co-polarized and cross-polarized
components on the admittance parameter.

1. INTRODUCTION

In recent years, the concept of perfectly electromagnetic conductor
(PEMC) got much popularity among the investigators working in the
field of electromagnetics. This concept was introduced by Lindell and
Sihvola [1]. Using differential-form formalism, they described that
PEC and PMC media may be generalized to a medium called perfectly
electromagnetic conducing medium. This medium is characterized by
a single parameter M , PEMC admittance, which can vary from zero
to infinity. A null admittance corresponds to a PMC medium and an
admittance of infinity to a PEC medium when the field magnitudes are
finite [2]. This medium is isotropic and the most notable property of
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this medium is its nonreciprocity when M has a finite nonzero value [3].
Because after scattering from a PEMC boundary, the electromagnetic
wave also have cross-polarized component along with the co-polarized
component [4–6]. The possible realization of such type of materials
has been discussed in [3]. The boundary conditions to be satisfied on a
PEMC surface can be written by using the PEC and PMC boundary
conditions and the fact that PEMC is the generalization of PEC and
PMC as follow

n̂× (H + ME) = 0, n̂ · (D−MB) = 0

where M is defined as the PEMC admittance and n̂ is the unit normal
to the boundary.

Scattering of electromagnetic wave from different PEMC
geometries has been demonstrated theoretically by many authors [7–
15]. In the present investigation, we studied the diffracting properties
of a slit in PEMC plane of arbitrary admittance and of negligible
thickness. The method of analysis adopted here is the Kobayashi
Potential (KP) method. The method has been successfully applied
to potential [16, 17] as well as scattering problems for different
geometries [18–22]. Imposition of the boundary conditions result
in dual integral equations (DIEs). These DIEs can be solved by
using the discontinuous properties of Weber-Schafheitlin integral and
the projection method like the method of moment (MoM), in which
Jacobi’s polynomials are used as the basis functions. Finally, the
problem reduces to matrix equations whose matrix elements are the
infinite integrals. These integrals are hard to solve analytically.
Therefore numerical methods are adopted to compute these integrals
and to solve the matrix equations for the determination of unknown
expansion coefficients. Illustrative computations have been presented
for the parameters of interest.

2. FORMULATION AND SOLUTION OF THE
PROBLEM

2.1. E-polarization

The geometry of the problem is shown in Fig. 1. The plane is infinite
in extent along z-axis which makes the problem two-dimensional.
Electromagnetic plane wave is incident upon the slit in PEMC plane
of negligible thickness. The width of the slit is 2a. If φ0 is the angle of
incidence, then the incident field Ei

z, co-polarized component Es
z and

cross-polarized component Hs
z of the scattered field can be written as



Progress In Electromagnetics Research M, Vol. 8, 2009 69

y

x
PEMC Plane PEMC Plane0

( , )

x= -a x= az

ρ φ

φ

Figure 1. Geometry of the problem.

Ei
z =exp

[
jk(x cosφ0 + y sinφ0)

]
(1a)

Es
z =

∫ ∞

0

{
fe(ξ) cos(xaξ) + ge(ξ) sin(xaξ)

}

exp
[
−

√
ξ2 − κ2ya

]
dξ y > 0 (1b)

Hs
z =

∫ ∞

0

{
fh(ξ) cos(xaξ) + gh(ξ) sin(xaξ)

}

exp
[
−

√
ξ2 − κ2ya

]
dξ y > 0 (1c)

where κ = ka, xa = x
a , ya = y

a and k is the propagation constant of the
free space. The fe,h(ξ) and ge,h(ξ) are the weighting functions to be
determined from the boundary conditions.

The required boundary conditions are given by

(i) The fields are continuous at |xa| ≤ 1 and y = 0,
(ii) Hs

x + MEs
x = 0 and Hs

z + MEs
z = 0 for |xa| ≥ 1 and y = 0.

Applying boundary condition given in (ii), we have
∫ ∞

0

[
fh(ξ)+Mfe(ξ)

]
cos(xaξ)+

[
gh(ξ)+Mge(ξ)

]
sin(xaξ)dξ = 0 (2a)

∫ ∞

0

[√
ξ2 − κ2

] [
fe(ξ)−MZ2fh(ξ)

]
cos(xaξ)

+
[
ge(ξ)−MZ2gh(ξ)

]
sin(xaξ)dξ = 0 (2b)
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where time dependance is taken as exp(jωt) in the calculations. The
above expressions can be used to decide the nature of weighting
functions fe,h(ξ) and ge,h(ξ) by making using of the discontinuous
properties of Weber-Schafheitlin’s integrals, as follow

fh(ξ) + Mfe(ξ) =
∞∑

m=0

AmJ2m+1(ξ)ξ−1 (3a)

gh(ξ) + Mge(ξ) =
∞∑

m=0

BmJ2m+2(ξ)ξ−1 (3b)

fe(ξ)−MZ2fh(ξ) =
∞∑

m=0

Cm
J2m(ξ)√
ξ2 − κ2

(3c)

ge(ξ)−MZ2gh(ξ) =
∞∑

m=0

Dm
J2m+1(ξ)√

ξ2 − κ2
(3d)

where Jm(.) be the Bessel’s function of order m and Am, Bm, Cm and
Dm are the expansion coefficients. Manipulating the above expressions,
we get

fe(ξ) =
1

1 + M2Z2

∞∑

m=0

Cm
J2m(ξ)√
ξ2 − κ2

+ MZ2Am
J2m+1(ξ)

ξ
(4a)

fh(ξ) =
1

1 + M2Z2

∞∑

m=0

−MCm
J2m(ξ)√
ξ2 − κ2

+ Am
J2m+1(ξ)

ξ
(4b)

ge(ξ) =
1

1 + M2Z2

∞∑

m=0

Dm
J2m+1(ξ)√

ξ2 − κ2
+ MZ2Bm

J2m+2(ξ)
ξ

(4c)

gh(ξ) =
1

1 + M2Z2

∞∑

m=0

−MDm
J2m+1(ξ)√

ξ2 − κ2
+ Bm

J2m+2(ξ)
ξ

(4d)

where Z be the impedance of free space. Boundary condition given
in (i) gives

∫ ∞

0

√
ξ2 − κ2

[
fe(ξ) cos(xaξ) + ge(ξ) sin(xaξ)

]
dξ

= jκ sinφ0 exp[jκxa cosφ0] (5a)∫ ∞

0

[
fe(ξ) cos(xaξ) + ge(ξ) sin(xaξ)

]
dξ = − exp[jκxa cosφ0] (5b)

Separating even and odd functions of the Expressions (5a) and (5b)
and then expanding the trigonometric functions in terms of Jacobi’s
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polynomials u
± 1

2
n (x2

a) and v
± 1

2
n (x2

a) [23], we obtain finally, the matrix
equations for the expansion coefficients

∞∑

m=0

H(2m, 2n + 1; κ)Cm + MZ2K(2m + 1, 2n + 1;κ)Am

= jκ sinφ0Ψ(MZ)
J2n+1(κ cosφ0)

(κ cosφ0)
(6a)

∞∑

m=0

H(2m + 1, 2n + 2;κ)Dm + MZ2K(2m + 2, 2n + 2; κ)Bm

= −κ sinφ0Ψ(MZ)
J2n+2(κ cosφ0)

(κ cosφ0)
(6b)

∞∑

m=0

G(2m, 2n;κ)Cm −MZ2H(2m + 1, 2n;κ)Am

= −Ψ(MZ)J2n(κ cosφ0) (6c)
∞∑

m=0

G(2m + 1, 2n + 1;κ)Dm −MZ2H(2m + 2, 2n + 1;κ)Bm

= jΨ(MZ)J2n+1(κ cosφ0) n = 0, 1, 2, . . . (6d)

where

Ψ(MZ) = 1 + M2Z2, G(α, β;κ) =
∫ ∞

0

Jα(ξ)Jβ(ξ)√
ξ2 − κ2

dξ (7a)

H(α,β;κ)=
∫ ∞

0

Jα(ξ)Jβ(ξ)
ξ

dξ, K(α,β;κ)=
∫ ∞

0

√
ξ2−κ2

ξ2
Jα(ξ)Jβ(ξ)dξ(7b)

In writing the Equation (6), we have used the following relations

cosx =
√

πx

2
J− 1

2
(x), sinx =

√
πx

2
J 1

2
(x) (7c)

x−m/2Jm(ξ
√

x)

=
∞∑

n=0

√
2(2n+m+ 1

2)Γ(n+m+ 1
2)

Γ(n + 1)Γ(m + 1)

J2n+m+ 1
2
(ξ)

ξ
1
2

um
n (x) (7d)

=
∞∑

n=0

√
8

(
2n+m+ 3

2

)
Γ

(
n+m+ 3

2

)

Γ(n + 1)Γ(m + 1)

J2n+m+ 3
2
(ξ)

ξ
3
2

vm
n (x) (7e)
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um
n (x) = F

(
n + m +

1
2
,−n,m + 1;x

)

vm
n (x) = F

(
n + m +

3
2
,−n,m + 1;x

)
(7f)

where F (m,n, l;x) is the hypergeometric series [23].
The Equations (6a)–(6d) may solved to evaluate the expansion

coefficients Am, Bm, Cm, Dm. The co-polarized component Es
z

and cross-polarized component Hs
z may be computed from the

Equations (2a), (2b) using the saddle point method. The final results
are

Es
z = C(kρ)

1
Ψ(MZ)

[ ∞∑

m=0

MZ2 [AmJ2m+1(κ cosφ) + BmJ2m+2(κ cosφ)] tanφ

−j [CmJ2m(κ cosφ) + DmJ2m+1(κ cosφ)]
]

(8a)

Hs
z = C(kρ)

1
Ψ(MZ)

[ ∞∑

m=0

[AmJ2m+1(κ cosφ) + BmJ2m+2(κ cosφ)] tanφ

+jM [CmJ2m(κ cosφ) + DmJ2m+1(κ cosφ)]
]

(8b)

where C(kρ) =
√

π
2kρ exp

[−jkρ− j π
4

]
and (ρ, φ) are the cylindrical

coordinates of the observation point. A far field in the lower region
can also be derived similarly.

2.2. H-polarization

The field expressions corresponding to Expressions (1) for H-
polarization may be written as

H i
z = exp

[
jk(x cosφ0 + y sinφ0)

]
(9a)

Es
z =

∫ ∞

0

{
fe(ξ) cos (xaξ)+ge(ξ) sin (xaξ)

}
exp

[
−

√
ξ2−κ2ya

]
dξ (9b)

Hs
z =

∫ ∞

0

{
fh(ξ) cos (xaξ)+gh(ξ) sin (xaξ)

}
exp

[
−

√
ξ2−κ2ya

]
dξ (9c)
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where Es
z is the cross component and Hs

z the co-component of the
scattered field for H-polarized incident field. All the notations used
in the above expressions have the same meaning as described in last
section. Applying the boundary conditions (ii), we get the same
expressions for the weighting functions fe,h(ξ) and ge,h(ξ) as given
by (4a)–(4d). Imposition of boundary conditions (i) and following the
same procedure as in the above case we finally get

∞∑

m=0

∫ ∞

0

[
Am

J2m+1(ξ)J2n(ξ)
ξ

−MCm
J2m(ξ)J2n(ξ)√

ξ2 − κ2

]
dξ

= −Ψ(MZ)J2n(κ cosφ0) (10a)
∞∑

m=0

∫ ∞

0

[
Bm

J2m+2(ξ)J2n+1(ξ)
ξ

−MDm
J2m+1(ξ)J2n+1(ξ)√

ξ2 − κ2

]
dξ

= −jΨ(MZ)J2n+1(κ cosφ0) (10b)
∞∑

m=0

∫ ∞

0

[
AmJ2m+1(ξ)J2n+1(ξ)

√
ξ2 − κ2

ξ2
+ MCm

J2m(ξ)J2n+1(ξ)
ξ

]
dξ

= jκ sinφ0Ψ(MZ)
J2n+1(κ cosφ0)

(κ cosφ0)
(10c)

∞∑

m=0

∫ ∞

0

[
BmJ2m+2(ξ)J2n+2(ξ)

√
ξ2−κ2

ξ2
+MDm

J2m+1(ξ)J2n+2(ξ)
ξ

]
dξ

= −κ sinφ0Ψ(MZ)
J2n+2(κ cosφ0)

(κ cosφ0)
(10d)

The above expressions may be expressed in more precise form as follow

∞∑

m=0

H(2m + 1, 2n;κ)Am −MG(2m, 2n;κ)Cm

= −Ψ(MZ)J2n(κ cosφ0) (11a)
∞∑

m=0

H(2m + 2, 2n + 1;κ)Bm −MG(2m + 1, 2n + 1;κ)Dm

= −jΨ(MZ)J2n+1(κ cosφ0) (11b)
∞∑

m=0

K(2m + 1, 2n + 1;κ)Am + MH(2m, 2n + 1;κ)Cm

= jκ sinφ0Ψ(MZ)
J2n+1(κ cosφ0)

(κ cosφ0)
(11c)
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∞∑

m=0

K(2m + 2, 2n + 2;κ)Bm + MH(2m + 1, 2n + 2;κ)Dm

= −κ sinφ0Ψ(MZ)
J2n+2(κ cosφ0)

(κ cosφ0)
n = 0, 1, 2, . . . (11d)

The above expressions are the matrix equations and can be solved for
the expansion coefficients Am, Bm, Cm, Dm by any standard method.

Far diffracted fields for the co- and cross-polarized components
are the same as that of (8a) and (8b) but the expansion coefficients
are given by (11) instead of (6).
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3. RESULTS AND DISCUSSIONS

The Equations (6) and (11) are the matrix equations and are derived
to compute the unknown coefficients Am, Bm, Cm and Dm for E-
and H-polarization respectively. These equations contain the integrals
G(α, β; κ), K(α, β; κ) and H(α, β; κ) and how to compute these
integrals are discussed in detail in [18]. We have taken the matrix size
(2κ + 1)× (2κ + 1) in our simulations. Once the expansion coefficients
are calculated, we can use them to compute the far field patterns for
co-polarized and cross-polarized components from (8a) and (8b). Since
M , the admittance parameter is most important in our work, therefore
we have tried to explore the dependence of field patterns on this
parameter. Fig. 2 and Fig. 3 show the variations in the field patterns
as a function of M for φ0 = 60◦, κ = 4 for E-polarization. It turns out
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that there exist no cross-polarized component Hz for PMC and PEC
case and it dominates for M = 1.0 and as we increase the value of M ,
the amplitude of the cross-component gradually decrease. While, the
co-polarized component Ez increases gradually, at φ = π − φ0, as we
increase the value of M . The same trends may also be seen for other
values of angle of incidence. Fig. 4 and Fig. 5 give the dependence
of the field patterns on angle of incidence for E-polarization case. It
is obvious that, for a particular value of φ0, the main lobe for the
diffracted field for co-component occur approximately at φ = π − φ0.
And as we increase angle of incidence, the main lobe shifts towards
the lower values of φ. For H-polarization, the dependence of field
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patterns on M is slightly different as is shown in Fig. 6 and Fig. 7.
As we increase the value of M the amplitude of the co-component, Hz

decreases (at φ = π − φ0) and the behavior of cross-component Ez is
similar to that of E-polarization case.
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