Vol. 94
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-13
A New Classifier for Polarimetric SAR Images
By
Progress In Electromagnetics Research, Vol. 94, 83-104, 2009
Abstract
This paper proposes a hybrid classifier for polarimetric SAR images. The feature sets consist of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features are reduced by principle component analysis (PCA). A 3-layer neural network (NN) is constructed, trained by resilient back-propagation (RPROP) method to fasten the training and early stop (ES) method to prevent the overfitting. The results of San Francisco and Flevoland site compared to Wishart Maximum Likelihood and wavelet-based method demonstrate the validness of our method in terms of confusion matrix and overall accuracy. In addition, NNs with and without PCA are compared. Results show the NN with PCA is more accurate and faster.
Citation
Yudong Zhang, Lenan Wu, and Geng Wei, "A New Classifier for Polarimetric SAR Images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905
References

1. Lee, J. S., M. R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution," Int. J. Remote Sensing, Vol. 15, No. 11, 2299-2311, 1994.
doi:10.1080/01431169408954244

2. Yang, S. Y., M. Wang, and L. C. Jiao, "Radar target recognition using contourlet packet transform and neural network approach," Signal Processing, Vol. 89, No. 4, 394-409, 2009.
doi:10.1016/j.sigpro.2008.09.015

3. Chen, C. H. and P.-G. P. Ho, "Statistical pattern recognition in remote sensing," Pattern Recognition, Vol. 41, No. 9, 2731-2741, 2008.
doi:10.1016/j.patcog.2008.04.013

4. Kasturirangan, K., "Space technology for humanity: A profile for the coming 50 years," Space Policy, Vol. 23, No. 3, 159-166, 2007.
doi:10.1016/j.spacepol.2007.06.015

5. Makal, S., A. Kizilay, and L. Durak, "On the target classification through wavelet-compressed scattered ultrawide-band electric field data and ROC analysis," Progress In Electromagnetics Research, Vol. 82, 419-431, 2008.
doi:10.2528/PIER08040903

6. Rostami, A. and A. Yazdanpanah-Goharriz, "A new method for classification and identification of complex fiber bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802

7. Khan, K. U. and J. Yang, "Polarimetric synthetic aperture radar image classification by a hybrid method," Tsinghua Science and Technology, Vol. 12, No. 1, 97-104, 2007.
doi:10.1016/S1007-0214(07)70015-9

8. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303

9. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201

10. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127

11. Cooper, G. R. J. and D. R. Cowan, "The use of textural analysis to locate features in geophysical data," Computers & Geosciences, Vol. 31, No. 7, 882-890, 2005.
doi:10.1016/j.cageo.2005.02.001

12. Mandal, S., P. V. Sivaprasad, S. Venugopal, and K. P. N. Murthy, "Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion," Applied Soft Computing, Vol. 9, No. 1, 237-244, 2009.
doi:10.1016/j.asoc.2008.03.016

13. Luukka, P., "Classification based on fuzzy robust PCA algorithms and similarity classifier," Expert Systems with Applications, Vol. 36, No. 4, 7463-7468, 2009.
doi:10.1016/j.eswa.2008.09.015

14. Durrington, P. N., V. Charlton-Menys, C. J. Packard, et al. "Familial hypobetalipoproteinemia due to a novel early stop mutation," Journal of Clinical Lipidology, Vol. 2, No. 5, 384-390, 2008.
doi:10.1016/j.jacl.2008.08.446

15. Shyu, J.-J., C.-H. Chan, M.-W. Hsiung, P.-N. Yang, H.-W. Chen, and W.-C. Kuo, "Diagnosis of articular cartilage damage by polarization sensitive optical coherence tomography and the extracted optical properties," Progress In Electromagnetics Research, Vol. 91, 365-376, 2009.
doi:10.2528/PIER09022602

16. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. Geosci. Remote Sensing, Vol. 35, No. 1, 549-557, 1997.
doi:10.1109/36.551935

17. Duan, Y., S.-J. Lai, and T. Huang, "Coupling projection domain decomposition method and meshless collocation method using radial basis functions in electromagnetics," Progress In Electromagnetics Research Letters, Vol. 5, 1-12, 2008.
doi:10.2528/PIERL08092003

18. Pottier, E. and S. R. Cloude, "Application of the H/A/α polarimetric decomposition theorems for land classification ," Proc. SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry, 132-143, San Diego, CA, USA, 1997.

19. Tien, C. L., Y. R. Lyu, and S. S. Jyu, "Surface flatness of optical thin films evaluated by gray level co-occurrence matrix and entropy," Applied Surface Science, Vol. 254, 4762-4767, 2008.
doi:10.1016/j.apsusc.2008.01.088

20. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

21. Luukka, P., "Classification based on fuzzy robust PCA algorithms and similarity classifier," Expert Systems with Applications, Vol. 36, No. 4, 7463-7468, 2009.
doi:10.1016/j.eswa.2008.09.015

22. Zainud-Deen, S. H., H. A. El-Azem Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

23. Zhang, Y. D. and L. Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

24. Riedmiller, M. and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks, 586-591, San Francisco, 1993.

25. Lee, Y. H. and S. Y. Huang, "Electromagnetic susceptibility of an electromagnetic band-gap filter structure," Progress In Electromagnetics Research B, Vol. 15, 31-56, 2009.
doi:10.2528/PIERB09042211

26. Gupta, K. K. and R. Gupta, "Despeckle and geographical feature extraction in SAR images by wavelet transform," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 62, No. 6, 473-484, 2007.
doi:10.1016/j.isprsjprs.2007.06.001

27. Fukuda, S. and H. Hirosawa, "A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images," IEEE Trans. on Geoscience and Remote Sensing, Vol. 37, No. 5, 2282-2286, 1999.
doi:10.1109/36.789624