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Abstract—This paper proposes a hybrid classifier for polarimetric
SAR images. The feature sets consist of span image, the H/A/α
decomposition, and the gray-level co-occurrence matrix (GLCM)
based texture features. Then, the features are reduced by principle
component analysis (PCA). A 3-layer neural network (NN) is
constructed, trained by resilient back-propagation (RPROP) method
to fasten the training and early stop (ES) method to prevent
the overfitting. The results of San Francisco and Flevoland sites
compared to Wishart Maximum Likelihood and wavelet-based method
demonstrate the validness of our method in terms of confusion matrix
and overall accuracy. In addition, NNs with and without PCA are
compared. Results show the NN with PCA is more accurate and faster.

1. INTRODUCTION

Different methods were employed for classification of polarimetric
synthetic aperture radar (SAR) data during the past years, such as
methods based on the maximum likelihood (ML) [1], artificial neural
networks (NN) [2], support vector machines [3], fuzzy methods [4] and
other approaches. Among these methods, the ML classifier can obtain
good classifications. However, the results are sensitive to the complex
Wishart distribution of the covariance [5, 6].

In this paper, the NN was adopted since the performance of NN
classifiers is independent of the type of distribution while depends only
on the training data and the discrimination power of the features [7, 8].
Classification accuracy depends mainly on the quality of features,
which should be robust with maximum discrimination power and
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must encompass most of the information available in the data [9].
Besides the usual target decomposition theorems [10], the gray level co-
occurrence matrix (GLCM) is adopted to extract texture features [11].

During the classification stage, a 3-layer NN was proposed. To
quicken the convergence of the NN weights and biases, resilient
backpropagation (RPROP) training algorithm was adopted [12].
Principal component analysis (PCA) is employed to reduce the
dimension of the generated feature vector [13]. Early stop (ES) method
is employed to prevent the overfitting [14]. Comparison of results using
complete versus reduced feature sets is presented which shows marginal
difference in overall classification accuracy.

The structure of this paper is as follows: in the next section, we
introduce the concept of Pauli decomposition. Section 3 presents the
span image, H/A/α decomposition, and feature derived from GLCM.
In Section 4, the feature reduction, structure of NN, RPROP train
method, and ES method are described. Experiments in Section 5
use the NASA/JPL AIRSAR image of San Francisco site to show
that our method performs better than Wishart Maximum Likelihood
(WML) method. Experiments in Section 6 apply our method to crop
classification on Flevoland site and prove it better than the wavelet-
based method. Section 7 discusses the effect of PCA. Finally, Section 8
concludes this paper.

2. PAULI DECOMPOSITION

2.1. Basic Introduction

The features are derived from the multilook coherence matrix of the
polarimetric SAR data [15]. Suppose S stands for the measured
scattering matrix,

S =
[

Shh Shv

Svh Svv

]
=

[
Shh Shv

Shv Svv

]
(1)

Here Sqp represents the scattering coefficients of the targets, p the
polarization of the incident field, q the polarization of the scattered
field. Shv equals to Svh since reciprocity applies in a monostatic system
configuration.

The Pauli decomposition expresses the scattering matrix S in
the so-called Pauli basis, which is given by the following three 2 × 2
matrices:

Sa =
1√
2

[
1 0
0 1

]
, Sb =

1√
2

[
1 0
0 −1

]
, Sc =

1√
2

[
0 1
1 0

]
(2)
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Thus, S can be expressed as.

S = aSa + bSb + cSc (3)

where
a =

Shh + Svv√
2

, b =
Shh − Svv√

2
, c =

√
2Shv (4)

The meanings of Sa, Sb, and Sc are listed in Table 1.
The coherence matrix is obtained as:

T = [a, b, c][a, b, c]T =

[
T11 T12 T13

T ∗12 T22 T23

T ∗13 T ∗23 T33

]
(5)

The average of multiple single-look coherence matrices is the multi-look
coherence matrix.

2.2. Pauli Color-coded Representation

The Polarimetric information of the scattering matrix could be
represented by the combination of intensities (|Shh|2, |Svv|2, 2|Shv|2)
in a single RGB image. However, the main drawback is the physical

Table 1. Pauli bases and their corresponding meanings.

Pauli Basis Meaning

Sa Single- or odd-bounce scattering

Sb Double- or even-bounce scattering

Sc

Those scatterers which are able to return the orthogonal

polarization to the one of the incident wave (forest canopy)

Figure 1. An example of Pauli color-coded representation.
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interpretation of the resulting image in terms of |Shh|2, |Svv|2, 2|Shv|2.
Consequently, an RGB image could be formed with the intensities |a|2,
|b|2, |c|2, which correspond to clear physical scattering mechanisms as
shown in Table 1.

The most employed codification corresponds to

|b|2 → Red, |c|2 → Green, |a|2 → Blue (6)

Figure 1 presents an example in San Francisco area; the size of
which is 1024× 900.

3. FEATURE EXTRACTION

The proposed features can be divided into four types, which are
explained below. The texture features consist of 4 GLCM-based
features, which should be multiplied by 3 since there exist 3 channels
(T11, T22, T33) shown in Fig. 1. In addition, there are 1 span feature
and 6H/α parameters. In all, the total features are 1 + 6 + 4× 3 = 19.

3.1. Span and H/A/Alpha Decomposition

The span or total scattered power is given by

M = |Shh|2 + |Svv|2 + 2 |Shv|2 (7)

Cloude and Potter [16] proposed an algorithm to identify in
an unsupervised way polarimetric scattering mechanisms in the H-α
plane. The method extends the two assumptions of traditional ways:
1) azimuthally symmetric targets; 2) equal minor eigenvalues λ2 and
λ3 [17].

T can be rewritten as:

T =U3

[
λ1 0 0
0 λ2 0
0 0 λ3

]
UH

3 (8)

U3=

[
cos α1 cos α2 cos α3

sin α1 cos β1 exp(iδ1) sin α2 cos β2 exp(iδ2) sin α3 cos β3 exp(iδ3)
sin α1 sin β1 exp(iγ1) sin α2 sin β2 exp(iγ2) sin α3 sin β3 exp(iγ3)

]
(9)

Then, the pseudo-probabilities of the T matrix expansion elements are
defined as

Pi =
λj∑3

j=1 λj

(10)
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The entropy indicates the degree of statistical disorder of the scattering
phenomenon. It can be defined as:

H =
3∑

i=1

−Pi log3 Pi 0 ≤ H ≤ 1 (11)

For high entropy values, a complementary parameter (anisotropy)
is necessary to fully characterize the set of probabilities. The
anisotropy is defined as the relative importance of the second scattering
mechanisms [18].

A =
P2 − P3

P2 + P3
0 ≤ A ≤ 1 (12)

The four estimates of the angles are easily evaluated as

[ᾱ, β̄, δ̄, γ̄] =
3∑

i=1

Pi[α, β, δ, γ] (13)

Thus, vectors from coherence matrix can be represented as (H, A,
ᾱ, β̄, δ̄, γ̄).

3.2. Texture Features

The GLCM is a text descriptor which takes into account the specific
position of a pixel relative to another. The GLCM is a matrix whose
elements correspond to the relative frequency of occurrence of pairs
of gray level values of pixels separated by a certain distance in a
given direction [19]. Formally, the elements of a GLCM G(i, j) for
a displacement vector (a, b) are defined as

G(i, j) = |{(x, y), (t, v) : I(r, s) = i & I(t, v) = j}| (14)

where (t, v) = (x + a, y + b), and | • | is the cardinality of a set.
The displacement vector (a, b) can be rewritten as (d, θ) in polar
coordinates.

GLCMs are suggested to calculate from four displacement vectors
with d = 1 and θ = 0◦, 45◦, 90◦, and 135◦ respectively. In this
study, the (a, b) are chosen as (0, 1), (−1, 1), (−1, 0), and (−1,−1)
respectively, and the corresponding GLCMs are averaged.

The four features are extracted from normalized GLCMs; the sum
of which is equal to 1. Suppose the normalized GLCM value at (i, j)
is p(i, j), and their detailed definition are listed in Table 2.



88 Zhang, Wu, and Wei

Table 2. Properties of GLCM.

Property Description Formula 

Contrast Intensity contrast between a pixel and its neighbor 

Correlation 
Correlation between a pixel and its neighbor (µ denotes the expected  

value, σ denotes the standard variance)

Energy Energy of the whole image

Homogeneity Closeness of the distribution of GLCM to the diagonal. 

Σ
i, j 

|i − j|  p (i, j)
2

Σ
i, j 

(i − µ )(j − µ ) p (i, j)i j

σ  σi j

Σ
i, j 

p (i, j)
2

Σ
i, j 

p (i, j)

1 + |i − j|

4. CLASSIFICATION METHODOLOGY

4.1. Feature Reduction

Excessive features increase computation times and storage memory.
Furthermore, they sometimes make classification more complicated,
which is called the curse of dimensionality. It is required to reduce the
number of features [20].

Principal component analysis (PCA) is an efficient tool to reduce
the dimension of a data set consisting of a large number of interrelated
variables while retaining most of the variations. It is achieved by
transforming the data set to a new set of ordered variables so that the
first few retain most of the variations in all of the original variables.
Detailed information about PCA could be seen in [21]

4.2. Neural Network Structure

Neural networks are widely used in pattern classification since they
do not need any information about the probability distribution
and a priori probabilities of different classes. A two-hidden-layer
backpropagation neural network is adopted with sigmoid neurons in
the hidden layers and linear neuron in the output layer.

The training vectors are formed from the selected areas and
normalized and presented to the NN which is trained in batch
mode [23]. The network configuration is 19×m× n× c, i.e., a three-
layer network with m neurons in the first hidden layer, n neurons in
the second hidden layer, and c neuron in the output layer.

4.3. Train Method

Multilayer networks typically use sigmoid transfer functions in the
hidden layers. These functions are often called “squashing” functions,
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since they compress an infinite input range into a finite output range.
Sigmoid functions are characterized by the fact that their slope must
approach zero as the input gets large. This causes a problem when
using steepest descent to train a multilayer network with sigmoid
functions, since the gradient can have a very small magnitude; and
therefore, cause small changes in the weights and biases, even though
the weights and biases are far from their optimal values.

Riedmiller proposed RPROP training algorithm, which is to
eliminate these harmful effects of the magnitudes of the partial
derivatives. Only the sign of the derivative is used to determine the
direction of the weight update; the magnitude of the derivative has no
effect on the weight update.

The size of the weight change is determined by a separate update
value. The update value for each weight and bias is increased by
a factor δinc whenever the derivative of the performance function
with respect to that weight has the same sign for two successive
iterations. The update value is decreased by a factor δdec whenever
the derivative with respect that weight changes sign from the previous
iteration. If the derivative is zero, then the update value remains the
same. Whenever the weights are oscillating the weight change will be
reduced. If the weight continues to change in the same direction for
several iterations, then the magnitude of the weight change will be
increased [24].

4.4. Early Stop

One of the problems that occur during neural network training is called
overfitting. The error on the training set is driven to a very small value,
but when new data is presented to the network the error is large.

Early stop (ES) is a fast method that can prevent overfitting.
In this technique the available data is divided into three subsets.
The first one is the training subset, which is used for computing the
gradient and updating the network weights/biases. The second one is
the validation subset. The error on this subset is monitored during

Figure 2. A three-layer neural network.
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the training. The validation error normally decreases as the training
set error does. However, when the network begins to overfit, the
validation error typically begins to rise. When the validation error
increases for a specified number of iterations, the training is stopped,
and the weights/biases at the minimum of the validation error are
returned. The third one is the test subset. It is used to compare
different models. If the error in the test subset reaches a minimum at
a significantly different iteration number compared with the validation
error, it indicates a poor division of the available data.

5. TERRAIN CLASSIFICATION ON SAN FRANCISCO
AREA

The NASA/JPL AirSAR L-band data about the San Francisco area
was used for the experiments. The sub-area with size 600 ∗ 600 was
extracted. Quantitative information about the experiment is described
as follows:

..

Number of features = 19 

Number of reduced features by PCA: 11 

(obtained by performing PCA on total 

available pairs) 

Location of Sub San Francisco Area: 

X-range: 1−600 

Y-range: 1−600

Parameters of GLCM 

local area: 5 × 5 (pixels) 

Number of gray levels: 8 

Offset: [0 1] 

Properties of Training/Testing Pairs 

Training Area 

No. of Sea = 15810 

No. of Urban = 9362 

No. of Vegetated = 5064 

Properties of Early Stop 

TrainRatio = 0.6 

ValidRatio = 0.2 

TestRatio = 0.2 

Maximum Failure Iterations = 

6 

Testing Area 

No. of Sea = 6723 

No. of Urban = 6800 

No. of Vegetated = 6534 

Parameters of NN 

Number of classes, c = 3

Configuration of neural network: m = 10,

n = 10 

..

....
.... ..

......
.......

Training mode: Batch mode 

Training algorithm: RPROP 

Number of epochs: 100 

Hardware: Pentium 4 CPU 1.66 GHz, 512 

MB of RAM 

Software: PolSARpro v4.0, Neural Network 

Toolbox of Matlab 7(R14) SP3 

....
.

5.1. Refine Lee Filter

The sub-area (600 × 600) is shown in Fig. 3(a). The refined Lee
filter (Window size = 7) is used to reduce the speckle noise, and the
results are shown in Fig. 3(b). The Lee filter adapts the amount of
filtering to the local statistics [25]. Homogeneous areas are filtered
with the maximum strength where point scatterers are let unfiltered.
The refined filter could use directional windows to preserve edges and
heterogeneous features [26].
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(a) The original; (b) The refine Lee filter results

Figure 3. Pauli image of sub-area of San Francisco.

5.2. Full Features

Then, the basic span image and three channels (T11, T22, T33) are
easily obtained and shown in Fig. 4. The parameters of H/A/Alpha
decomposition are shown in Fig. 5. The GLCM-based parameters of
T11, T22, T33 are shown in Figs. 6–8.

(a) Span (dB)  (b) T    (dB)  (c) T    (dB)  (d) T    (dB)11 22 33

Figure 4. Basic span image and three channels image.

5.3. Feature Reduction

The curve of cumulative sum of variance with dimensions of reduced
vectors via PCA is shown in Fig. 9. The detailed data are listed in
Table 3. It shows that only 10 features, which are only half of the
original features, could preserve 96.55% of variance.

5.4. Network Training

The classification is run over three classes, the sea, urban areas and
vegetated zones which are selected manually shown in Fig. 10(a). The
testing area is shown in Fig. 10(b).
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(a) H (b) A (c) α
−

(d) β
−

(f) γ
−

(e) δ
−

Figure 5. Parameters of H/A/Alpha decomposition.

(a) Contrast (b) Correlation (c) Energy (d) Homogeneity

Figure 6. GLCM-based features of T11.

(a) Contrast (b) Correlation (c) Energy (d) Homogeneity

Figure 7. GLCM-based features of T22.



Progress In Electromagnetics Research, PIER 94, 2009 93

(a) Contrast (b) Correlation (c) Energy (d) Homogeneity

Figure 8. GLCM-based features of T33.

Table 3. Detailed data of PCA on 19 features.

Dimensions 1 2 3 4 5 6 7 8 9 

Variance (%) 39.78 54.40 63.17 71.30 78.94 84.54 88.49 91.99 94.59 

Dimensions 10 11 12 13 14 15 16 17 18 

Variance (%) 96.55 97.51 98.41 98.99 99.43 99.68 99.92 99.96 99.99 
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Figure 9. The curve of cumulative sum of variance with dimensions.

The training area is divided into 3 subsets: train, validation, and
test subsets. Their corresponding ratios are: 0.6, 0.2, and 0.2. The
performance of the network is shown in Fig. 11.

From 69th to 75th epoch, the error of train subset decreases while
that of validation subset increases, which implies the over-fitting takes
place, so the optimal epoch is chosen as 69. It costs 58.2734 s to train
the network. Although it seems a little longer, the train process belongs
to pre-processing and does not perform during classification.
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(a) Training Set (b) Testing Set

Figure 10. Sample data for NN (red denotes sea, green urban areas,
blue vegetated zones).
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Figure 11. Performance of NN.

5.5. Classification Results

We compare our method with Wishart Maximum Likelihood (WML)
statistics. The results on the whole image are shown in Fig. 12.

The confusion matrices (CM ) by both methods on training and
testing areas are listed in Table 4. The element of ith row and jth
column represents the amount of pixels in percent belonging to class
i as user defined which are assigned to class j after the supervised
classification.

From Table 4, it is obvious that the classification accuracies
in training area are all higher than 94%. For the testing area,
classification accuracies are all higher than 91%. The main drawback
is around vegetated zones which are easily misclassified as urban area.
In all, our method is superior to the WML method because of the
extended feature set and the adoption of NN.

The overall accuracies are calculated and listed in Table 5, which
demonstrates that our method has a 2.2% higher overall accuracy in
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Table 4. Comparison of confusion matrix (values are given in percent).

Training Area Testing Area 

Sea(O) Urb(O) Veg(O) Sea(O) Urb(O) Veg(O)

WML 

Sea(T) 99.95 0.01 0.04 100 0 0

Urb(T) 0 94.17 5.83 0 97.21 2.79

Veg(T) 0 2.43 97.57 1.07 7.65 91.27

Sea(T) 1 0 0 99.91 0.07 0.01

Urb(T) 0.02 99.43 0.54 0.06 98.46 1.49Our Method

Veg(T) 0 2.41 97.59 0.90 1.58 97.52

(O denotes the output class, T denotes the target class)

(a) WML (b) This proposed method

Figure 12. Classification map.

Table 5. Comparison of overall accuracy (values are given in percent).

Training Area Testing Area
WML 97.23 96.16

Our Method 99.42 98.64

training area and 2.5% higher in testing area.

6. CROP CLASSIFICATION ON FLEVOLAND AREA

6.1. Refine Lee Filter

Flevoland, an agricultural area in The Netherlands, is chosen as
another example. The site is composed of strips of rectangular
agricultural fields. The scene is designated as a supersite for the earth
observing system (EOS) program and is continuously surveyed by the
authorities.
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The Pauli image of Flevoland is shown in Fig. 13(a), and the refine
Lee filtered image (Window Size = 7) is shown in Fig. 13(b).

(a) The original; (b) The refine Lee filter results

Figure 13. Pauli image of Flevoland (1024× 750).

6.2. Full Features

Te basic span image and three channels (T11, T22, T33) are easily
obtained and shown in Fig. 14. The parameters of H/A/Alpha
decomposition are shown in Fig. 15. The GLCM-based parameters
of T11, T22, T33 are shown in Figs. 16–18.

6.3. Feature Reduction

The curve of cumulative sum of variance with dimensions of reduced
vectors via PCA is shown in Fig. 19. The detailed data are listed in
Table 6. It shows that only 13 features, which are only half of the
original features, could preserve 98.06% of variance.

6.4. Network Training

The classification is run over three classes, the sea, urban areas and
vegetated zones which are selected manually shown in Fig. 20(a). The
testing area is shown in Fig. 20(b).

The performance of the network is shown in Fig. 21. The optimal
epoch is 254, and the training time is 31.16 s.

(a) Span (dB)  (b) T    (dB)  (c) T    (dB)  (d) T    (dB)11 22 33

Figure 14. Basic span image and three channels image.
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6.5. Classification Results

We apply our method on the whole image. The results on the whole
image are shown in Fig. 22.

From Fig. 22, it is clear that our method can classify most of the
areas correctly. The confusion matrices on training and testing areas
are calculated and listed in Table 7.

The overall accuracies of our method on train and test areas

(a) H (b) A (c) α
−

(d) β
−

(f) γ
−

(e) δ
−

Figure 15. Parameters of H/A/Alpha decomposition.

(a) Contrast (b) Correlation (c) Energy (d) Homogeneity

Figure 16. GLCM-based features of T11.

(a) Contrast (b) Correlation (c) Energy (d) Homogeneity

Figure 17. GLCM-based features of T22.
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(a) Contrast (b) Correlation (c) Energy (d) Homogeneity

Figure 18. GLCM-based features of T33.
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Figure 19. The curve of cumulative sum of variance with dimensions.

Table 6. Detailed data of PCA on 19 features.

Dimensions 1 2 3 4 5 6 7 8 9

Variance (%) 26.31 42.98 52.38 60.50 67.28 73.27 78.74 82.61 86.25

Dimensions 10 11 12 13 14 15 16 17 18

Variance (%) 89.52 92.72 95.50 98.06 98.79 99.24 99.63 99.94 99.97

(a) Training Set (b) Testing Set (c) Legend of Colors

BareSoil 1

BareSoil 2

Barley

Forest

Grass

Lucerne

Peas

Potatoes

Rapeseed

StemBeans

SugarBeet

Figure 20. Sample data areas for NN.

are 98.62% and 92.87% respectively. Fukuda used a wavelet-based
method to classify the same Flevoland area, and it obtained the overall
accuracy as 88.28% (see Table 2 in Ref. [27]).
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Figure 21. Performance of NN.

Table 7. Confusion matrix comparison on train area (values are given
in percent).

Class 1(O) 2(O) 3(O) 4(O) 5(O) 6(O) 7(O) 8(O) 9(O) 10(O) 11(O) 12(O) 13(O)

1(T) 99.75 0 0 0 0 0 0 0 0 0 0 0.25 0

2(T) 0 99.75 0 0 0 0 0 0 0 0 0.25 0 0

3(T) 0 0 100 0 0 0 0 0 0 0 0 0 0

4(T) 0 0 0 93 0 0 6.25 0.5 0 0.25 0 0 0

5(T) 0 0 0.25 0 99.25 0.5 0 0 0 0 0 0 0

6(T) 0 0 0 0 0 100 0 0 0 0 0 0 0

7(T) 0 0 0 1 0 0 97.5 0.75 0 0 0.75 0 0

8(T) 0 0.25 0 3 0 0 0 96.5 0 0.25 0 0 0

9(T) 0 0 0 0 0 0 0 0 99.75 0 0 0.25 0

10(T) 0 0 0 0.25 0 0 0.25 0.25 0 99.25 0 0 0

11(T) 0 0.25 0 0 0 0 1.5 0 0 0 98.25 0 0

12(T) 0 0 0 0 0 0 0 0 0.75 0 0 99.25 0

13(T) 0 0 0 0 0 0.25 0 0 0 0 0 0 99.75

The overall accuracy is 98.62%

7. DISCUSSIONS ON WITH/WITHOUT PCA

7.1. Overall Accuracy

Sixty square areas of different size are picked out randomly from the
Flevoland area and classified with neural networks with/without PCA.
The overall accuracies of these two NNs are observed and shown in
Fig. 23. It should be noted that input data of the NN without PCA
should be normalized although the PCA is omitted. Otherwise the
performance of NN will decrease rapidly.
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Table 8. Confusion matrix comparison on test area (values are given
in percent).

Class 1(O) 2(O) 3(O) 4(O) 5(O) 6(O) 7(O) 8(O) 9(O) 10(O) 11(O) 12(O) 13(O)

1(T) 96.5 0 0 0 0 0 0 0 0 0 3.5 0 0

2(T) 0 98.75 0 0 0 0 0.25 0 1 0 0 0 0

3(T) 3 0 94.75 0 2.25 0 0 0 0 0 0 0 0

4(T) 0 0 0 94.75 0 0 5 0 0 0.25 0 0 0

5(T) 0 0 0 0 95.5 4.5 0 0 0 0 0 0 0

6(T) 0 0 0 0 16 83.75 0 0 0 0.25 0 0 0

7(T) 0 0.25 0 15 0 0 77 6.25 0 0.25 1.25 0 0

8(T) 0 0.75 0 0 0 0 0 99.25 0 0 0 0 0

9(T) 0 0 0 0 0 0 0 0 91.25 0 7.5 0 1.25

10(T) 0 0 0 0 0 0 0 0 0 98.75 0 0 1.25

11(T) 0 0.5 0 0.5 0 2 2.75 0 0.5 0 91.75 0 2

12(T) 6.25 0 1 0 0 0 0 0 2 0 0 90.75 0

13(T) 0 2.5 0 0 0 0 0 0 0 0 3 0 94.5

The overall accuracy is 92.87%

Figure 22. Classification map of our method.
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Figure 23. The overall accuracy versus square width.

The mean of overall accuracy of NN with PCA is 0.9861, and
the mean of overall accuracy of NN without PCA is 0.9832. It
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demonstrates that the overall accuracy of the NN with PCA is 0.003
superior to that of the NN without PCA.
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Figure 24. Computation time versus square width.

7.2. Computation Time

Computation times are depicted in Fig. 24, which indicates that NN
with PCA enjoys a less computation time than NN without PCA.
The time difference is gradually becoming large as the width of the
randomly selected area increases.

Suppose W denotes the width of square, n the corresponding
pixels, and n = W 2. We can calculate the time complexity of our
method from Fig. 24.

Time = 9.118× 10−6w2 − 1.943× 10−4w + 1.455× 10−2 (15)

The fitting curve is shown in Fig. 25. The curve fits the data quite
accurately, and goodness-of-fit statistics is listed in Table 9.

It is obvious that the time complexity of our method is O(W 2).
Since n = W 2, we can conclude that Time = O(n).

Table 9. Goodness of fit statistics.

Index Value

Sum of squares due to error 9.0753× 10−5

Coefficient of determination 0.9843

Degrees of freedom 57

Degree-of-freedom adjusted coefficient of determination 0.9838

Root mean squared error 0.0013
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Figure 25. Time complexity of our method.

8. CONCLUSION

In this paper, a hybrid feature set has been introduced which is made
up of the span image, H/A/α decomposition, and GLCM-based texture
features. Then, a two-hidden-layer neural network has been trained by
RPROP and ES method. The overall accuracies of the classification
of San Francisco and Flevoland sites demonstrate the validity of our
method. In addition, using a reduced feature set with PCA to replace
the total feature set is also proved effective and faster.
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