Vol. 93
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-06-18
Retrieving the Green's Function from Cross Correlation in a Bianisotropic Medium
By
Progress In Electromagnetics Research, Vol. 93, 255-274, 2009
Abstract
Development of theory and experiments to retrieve Green's functions from cross correlations of recorded wave fields between two receivers has grown rapidly in the last seven years. The theory includes situations with flow, mechanical and electromagnetic disturbances and their mutual coupling. Here an electromagnetic theory is presented for Green's function retrieval from cross correlations that incorporates general bianisotropic media, which is the most general class of linear media. In the presence of dispersive non-reciprocal media, the Green's function is obtained by cross correlating the recordings at two locations of fields generated by sources on a boundary. The only condition for this relation to be valid is that the medium is non-dissipative. The principle of bianisotropic Green's function retrieval by cross correlation is illustrated with a numerical example.
Citation
Evert C. Slob, and Kees Wapenaar, "Retrieving the Green's Function from Cross Correlation in a Bianisotropic Medium," Progress In Electromagnetics Research, Vol. 93, 255-274, 2009.
doi:10.2528/PIER09041004
References

1. Scherbaum, F., "Seismic imaging of the site response using microearthquake recordings: Part I. Method," Bull. Seism. Soc. Am., Vol. 77, No. 6, 1905-1923, 1987.

2. Scherbaum, F., "Seismic imaging of the site response using microearthquake recordings: Part I. Application to the Swabian Jura, southwest Germany, seismic network," Bull. Seism. Soc. Am., Vol. 77, No. 6, 1924-1944, 1987.

3. Buckingham, M. J., B. V. Berkhout, and S. A. L. Glegg, "Imaging the ocean with ambient noise," Nature, Vol. 356, No. 6367, 327-329, London, March 1992.
doi:10.1038/356327a0

4. Weaver, R. and O. Lobkis, "Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies," Phys. Rev. Lett., Vol. 87, No. 13, 134301-1-134301-4, 2001.
doi:10.1103/PhysRevLett.87.134301

5. Campillo, M. and A. Paul, "Long-range correlations in the diffuse seismic coda waves," Science, Vol. 299, No. 5606, 547-549, 2003.
doi:10.1126/science.1078551

6. Shapiro, N., M. Campillo, L. Stehly, and M. Ritzwoller, "High-resolution surface-wave tomography from ambient seismic noise," Science, Vol. 307, No. 5715, 1615-1618, 2005.
doi:10.1126/science.1108339

7. Draganov, D., K. Wapenaar, W. Mulder, J. Singer, and A. Verdel, "Retrieval of reflections from seismic background-noise measurements," Geoph. Res. Lett., Vol. 34, No. 4, L04305, 2007.
doi:10.1029/2006GL028735

8. Schuster, G., J. Yu, J. Sheng, and J. Rickett, "Interferomet-ric/daylight seismic imaging," Geoph. J. Int., Vol. 157, No. 2, 838-852, 2004.
doi:10.1111/j.1365-246X.2004.02251.x

9. Snieder, R., "Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase," Phys. Rev. E, Vol. 69, No. 4, 046610-1-046610-8, 2004.
doi:10.1103/PhysRevE.69.046610

10. Wapenaar, K., "Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation," Phys. Rev. Lett., Vol. 93, No. 25, 254301-1-254301-4, 2004.
doi:10.1103/PhysRevLett.93.254301

11. Lerosey, G., J. De Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, "Time reversal of electromagnetic waves," Phys. Rev. Lett., Vol. 92, No. 19, 193904-1-193904-3, 2004.
doi:10.1103/PhysRevLett.92.193904

12. Corbella, I., N. Duffo, M. Vall-llossera, A. Camps, and F. Torres, "The visibility function in interferometric aperture synthesis radiometry," IEEE Trans. on Geoscience and Remote Sensing, Vol. 42, No. 8, 1677-1682, 2004.
doi:10.1109/TGRS.2004.830641

13. Oestges, C., A. Kim, G. Papanicolaou, and A. Paulraj, "Characterization of space-time focusing in time-reversed random fields," IEEE Trans. Ant. and Prop., Vol. 53, No. 1, 283-293, 2005.
doi:10.1109/TAP.2004.836399

14. Snieder, R., "Retrieving the Green's function of the diffusion equation from the response to a random forcing ," Phys. Rev. E, Vol. 74, No. 4, 046620-1-046620-9, 2006.
doi:10.1103/PhysRevE.74.046620

15. Slob, E., D. Draganov, and K. Wapenaar, "GPR without a source," Proceedings of the 11th International Conf. on GPR, ANT. 6, Ohio State University, Columbus, Ohio, , 2006.

16. Wapenaar, K., E. Slob, and R. Snieder, "United Green's function retrieval by cross correlation ," Phys. Rev. Lett., Vol. 97, No. 23, 234301-1-234301-4, 2006.
doi:10.1103/PhysRevLett.97.234301

17. Slob, E., D. Draganov, and K. Wapenaar, "Interferometric electromagnetic Green's functions representations using propagation invariants," Geoph. J. Int., Vol. 169, No. 1, 60-80, 2007.
doi:10.1111/j.1365-246X.2006.03296.x

18. Slob, E. and K. Wapenaar, "GPR without a source: Cross-correlation and cross-convolution methods," IEEE Trans. Geoscience and Remote Sensing, Vol. 45, No. 8, 2501-2510, 2007.
doi:10.1109/TGRS.2007.900995

19. Slob, E. and K. Wapenaar, "Electromagnetic Green's functions retrieval by cross-correlation and cross-convolution in media with losses," Geoph. Res. Lett., Vol. 34, No. 5, L05307, 2007.

20. Weaver, R., "Ward identities and the retrieval of Green's functions in the correlations of a diffuse field," Wave Motion, Vol. 45, No. 5, 596-604, 2008.
doi:10.1016/j.wavemoti.2007.07.007

21. Ruigrok, E., D. Draganov, and K. Wapenaar, "Global-scale seismic interferometry: Theory and numerical examples," Geophysical Prospecting, Vol. 56, No. 3, 395-417, May 2008.
doi:10.1111/j.1365-2478.2008.00697.x

22. Kong, J., "Theorems of bianisotropic media," Proceedings of the IEEE, Vol. 60, No. 9, 1036-1046, 1972.

23. Chow, W. W., J. G.-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, "The ring laser gyro," Rev. Mod. Phys., Vol. 57, No. 1, 61-104, January 1985.
doi:10.1103/RevModPhys.57.61

24. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, No. 1, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003

25. Caloz, C. and T. Itoh, Electromagnetic Metamaterials, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

26. Pitarch, J., J. M. C.-Civera, F. L. P.-Foix, and M. A. Solano, "Efficient modal analysis of bianisotropic waveguides by the coupled mode method," IEEE Trans. on Microwave Theory and Techniques, Vol. 55, No. 1, 108-116, 2007.
doi:10.1109/TMTT.2006.888576

27. Cui, T.-J., H.-F. Ma, R. P. Liu, B. Zhao, Q. Cheng, and J. Y. Chin, "A symmetrical circuit model describing all kinds of circuit metamaterials," Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008.
doi:10.2528/PIERB08013009

28. Huang, R., Z.-W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIERB09040902

29. Weng, Z.-B., Y.-C. Jiao, F.-S. Zhang, Y. Song, and G. Zhao, "A multi-band patch antenna on metamaterial substrate," J. of Electromagn. Waves and Appl., Vol. 22, No. 2/3, 445-452, 2008.
doi:10.1163/156939308784160776

30. Wongkasem, N., A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, "Development of chiral negative refractive index metamaterials for the terahertz frequency regime," IEEE Trans. Antennas and Propagation, Vol. 55, No. 11, 3052-3062, 2007.
doi:10.1109/TAP.2007.909419

31. Meiners, C. and A. F. Jacob, "Numerical and experimental parameter study of helix layers," Trans. Antennas and Propagation, Vol. 56, No. 5, 1321-1328, 2008.
doi:10.1109/TAP.2008.922170

32. Silveirinha, M. G., "Design of linear-to-circular polarization transformers made of long densely packed metallic helices," IEEE Trans. Antennas and Propagation, Vol. 56, No. 2, 390-401, 2008.
doi:10.1109/TAP.2007.915428

33. Santagata, N. M., P. Luo, A. M. Lakhani, D. J. De Witt, B. S. Day, M. L. Norton, and T. P. Pearl, "Organizational structure and electronic decoupling of surface bound chiral domains and biomolecules," IEEE Sensors Journal, Vol. 8, No. 6, 758-766, 2008.
doi:10.1109/JSEN.2008.923187

34. Tajitsu, Y., "Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering," IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 55, No. 5, 1000-1008, 2008.
doi:10.1109/TUFFC.2008.746

35. Yang, X. M., J. Y. Chin, Q. Cheng, X. Q. Lin, and T. J. Cui, "Realization and experimental verification of chiral cascaded circuit," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 308-310, 2008.

36. Dong, J. and C. Xu, "Characteristics of guided modes in planar chiral nihility meta-material waveguides," Progress In Electromagnetics Research B, Vol. 14, 107-126, 2009.
doi:10.2528/PIERB09012201

37. Lindell, I., A. Sihvola, and K. Suchy, "Six-vector formalism in electromagnetics of bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 7-8, 887-903, 1995.
doi:10.1163/156939395X00631

38. Wapenaar, K. and J. Fokkema, "Reciprocity theorems for diffusion, flow and waves," A.S.M.E. Journal of Applied Mechanics, Vol. 71, No. 1, 145-150, 2004.

39. Tai, C., "A study of electrodynamics of moving media," Proceedings of the IEEE, Vol. 52, No. 6, 685-689, 1964.

40. Harrington, R. and A. Villeneuve, "Reciprocity relationships for gyrotropic media," IRE Trans. on Microwave Theory and Techn., Vol. 6, No. 3, 308-310, 1958.
doi:10.1109/TMTT.1958.1124563

41. Altman, C. and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, Kluwer, Dordrecht, 1991.

42. Lindell, I., A. Sihvola, S. Tretyakov, and A. Viitanen, Electromagnetic Waves and Bi-Isotropic Media, Artech House, Boston, 1994.

43. Melrose, D. and R. McPhedran, Electromagnetic Processes in Dispersive Media, Cambridge University Press, Cambridge, 1991.

44. Landau, L. and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, New York, 1994.

45. Van Manen, D.-J., J. Robertsson, and A. Curtis, "Modeling of wave propagation in inhomogeneous media," Phys. Rev. Lett., Vol. 94, No. 16, 164301-1-164301-4, 2005.
doi:10.1103/PhysRevLett.94.164301

46. Wapenaar, K., "General wave field representations for seismic modeling and inversion ," Geophysics, Vol. 72, No. 5, SM5-SM17, 2007.
doi:10.1190/1.2750646

47. Shen, J., "Negative refractive index in gyrotropically magnetoelectric media," Phys. Rev. B, Vol. 73, No. 4, 045113, 2006.
doi:10.1103/PhysRevB.73.045113

48. Kiehn, R., G. Kiehn, and J. Roberds, "Parity and time-reversal symmetry breaking, singular solitons, and Fresnel surfaces," Phys. Rev. A, Vol. 43, No. 10, 5665-5671, 1991.
doi:10.1103/PhysRevA.43.5665