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Abstract—Development of theory and experiments to retrieve
Green’s functions from cross correlations of recorded wave fields
between two receivers has grown rapidly in the last seven years. The
theory includes situations with flow, mechanical and electromagnetic
disturbances and their mutual coupling. Here an electromagnetic
theory is presented for Green’s function retrieval from cross correlations
that incorporates general bianisotropic media, which is the most
general class of linear media. In the presence of dispersive non-
reciprocal media, the Green’s function is obtained by cross correlating
the recordings at two locations of fields generated by sources on a
boundary. The only condition for this relation to be valid is that
the medium is non-dissipative. The principle of bianisotropic Green’s
function retrieval by cross correlation is illustrated with a numerical
example.

1. INTRODUCTION

The possibility of subsurface imaging using pulse-echo data obtained
from cross correlations of noise recordings is known for more than 20
years [1-3]. Over the last seven years much attention has gone to
Green’s function retrieval from cross-correlations of acoustic ambient
noise recordings and to use the results to form acoustic images of
the surrounding medium. Weaver and Lobkis [4] retrieved Green’s
functions from natural thermal field fluctuations. Campillo and
Paul [5] applied Green’s function retrieval to the diffuse parts of
seismic coda waves. Shapiro etal. [6] applied it to surface waves
to image the subsurface of California. Draganov etal. [7] retrieved
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seismic subsurface reflections from noise records. Schuster et al. [8] and
Snieder [9] showed with stationary phase theory how not all sources
on the boundary play an equally important role, but only those that
are stationary for the resulting event. Wapenaar [10] showed that the
elastodynamic response of an arbitrary heterogeneous elastic half space
can be retrieved from contributions of sources in the subsurface below
a pressure free surface. The assumption underlying these formulations
and physical experiments, is that the waves travel in lossless, but
possibly strongly scattering, media.

Until 2006 no electromagnetic theories and experiments were
known, although reports on related subjects exist [11-13] that exploit
time-reversal invariance. In dissipative media, time-reversal invariance
does not apply at the macroscopic scale. The rigorous incorporation of
dissipation in the representations were first reported by Snieder [14],
who derived a representation for the scalar diffusion equation, and
Slob etal. [15], who derived representations for ground-penetrating
radar. Incorporating dissipative media in the formulations leads to
an additional volume integral over sources distributed throughout
the volume that compensate for the energy loss. At the end of
2006 a general formulation of Green’s function retrieval for linear
flow, diffusive and wave fields was given by Wapenaar etal. [16].
The configuration where these interferometric representations apply
consists of mutually uncorrelated sources on a closed surface enclosing
the two receivers.

Interferometric Green’s function representations involve cross
correlation and integration of recorded fields. This technique extracts
the Green’s function between two receivers from cross correlation of
their recordings and is called interferometry. The electromagnetic
Green’s function retrieval representations can be envisaged as coherent
interferometric radiometry.  Slob etal. [17] derived formulations
for interferometry by cross correlation and by cross convolution.
These rely on the block-diagonal structure of the constitutive matrix
corresponding to ordinary anisotropic media. Representations have
been derived for two different configurations. In the first configuration
the receivers are enclosed by the sources on a closed boundary, while
in the second one of the receivers is outside the closed boundary.
Numerical results demonstrated that when the dissipation is wealk,
the results only suffer from amplitude errors, but the arrival times of
the events are correct and no spurious events result from the cross
correlations. Slob and Wapenaar [18] showed for the electromagnetic
representations in how far field approximations lead to practical
applications without the occurrence of spurious events in the results.
They showed for both configurations that Green’s function extraction
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is possible without contributions of sources distributed in the volume
when the medium only dissipates energy outside the boundary [19].

Weaver starts with Ward identities for linear acoustics in a recent
acoustic derivation for Green’s function retrieval by correlations of
diffuse fields [20]. He suggests that Coriolis forces in mechanics
and Lorentz forces in electrodynamics can be incorporated starting
with Ward identities, but no proof was given. The incorporation of
Coriolis forces in acoustics has been established in the Green’s function
retrieval formulation based on reciprocity theory [21]. In this paper
the Green’s function is retrieved for general linear electromagnetic
media, characterized by full constitutive matrices [22] including the
effects of Lorentz forces. It is shown that the principle of Green’s
function retrieval by cross-correlation holds for general bianisotropic
materials. The constitutive matrices have symmetry properties that
follow from the physics of chiral and gyrotropic media. An early
example is the dual polarized ring laser [23] that can be used in
downhole formation testing for oil exploration. Bianisotropic media
are of growing importance in the fabrication of metamaterials [24] that
can be used in transmission lines and waveguide structures [25,26],
circuits [27], absorbers [28] and in multi-band patch antennas [29]. Also
macroscopically chiral media have been designed [30-36]. They extend
from the microwave range to the optical regime. The theory developed
here can be of interest for, passive or active, coherent interferometric
radiometry in the available electromagnetic spectrum.

spectrum.

2. RECIPROCITY AND POWER BALANCE

The theory is developed in six-vector notation [33] and uses a unitary

six-matrix, K, as,
-1 O

and the unit matrix I is used for the 3 x 3 and 6 x 6 unit matrix, but no
confusion occurs. Note that K7 = K = K~!. The macroscopic space-
time electromagnetic field is determined by the electric field E(x,t),
the magnetic field H(x,t), the electric and magnetic flux densities
D(x,t),B(x,t), and the external source volume densities of electric
and magnetic currents, {J¢(x,t),J™(x,t)}, respectively. The time-
E‘ourier transform of a space-time dependent quantity is defined as
f(x,w) = [exp(—jwt)f(x,t)dt, where j is the imaginary unit and
w denotes angular frequency. The frequency domain constitutive
relations are given by D =é¢E + EI:I and B = ¢ E+ ;lI:I where electric
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permittivity and magnetic permeability tensors are given by € and f,
while é , é’ denote the magneto-electric tensors. The effects of moving
media and all possible time-relaxation mechanisms are incorporated in
the frequency dependent complex valued material tensors. Maxwell’s
equations read D, u + jwMﬁ = §, where the field vector u is given
by 67 (x,w) = (BET,HT) and the superscript 7' denotes transposition,

§T(x,w) = —({I}7,{IJ™7) is the source vector, while D, is the
matrix of spatial differential operators given by
0 —03 O
T 3 02
Dx:<]§) %()), D():(ag 0 —al>. 2)
0 -0y O 0

The material matrix is defined as

N — ( € ¢ ) . 3)
¢ B
The following symmetry property is satisfied by the derivative matrix,
KD,K = —D, = —DI and it is noted that the superscript 7" is used
for matrix transposition and not for operator transposition.

A reciprocity theorem relates two states, labeled A and B, that
can be non-identical everywhere. The reciprocity theorem of the time-
convolution type is used and applied to a bounded spatial domain
D, and outer boundary 0D with outward pointing unit normal vector
nT = {ny,ny,n3}. With the above definitions, the theorem reads [34]

/ [0} Ksp — s\ Kag] d*x

D

_ 7{ KN, Gpd?x + jw / [ﬁ?; (KMB - M£K> ﬁB} Bx (4)
oD D

where N, is defined similar to D, given by

0 -—n n

T 3 2

Nx:<1\? 1\(1)0), N0:< ns 0 —711). (5)
0 —n2 ni 0

Equation (4) is the general representation for two independent
electromagnetic states in bianisotropic media. The sources and source
locations as well as the media in the two states can be completely
different. The first integral in the right-hand side of Equation (4)
represents the boundary integral over the outer boundary, where
continuity conditions apply.
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The volume integral in the right-hand side of Equation (4) vanishes
when 1\7{A = KAl\A/IgK,AWhich implies that é4 = €5, uia = a5,
Ca = —Eg and £4 = —Cg. The two media for which this occurs are
each other’s adjoint. For example an ordinary reciprocal anisotropic
lossless medium becomes bianisotropic when it is moving with velocity
va and the magneto-electric tensor elements are given by &4 =
(eapa — eopo)€ijkvja and Gmna = Eum:a [35]. It is clear that if
vp = —v4 the two media are each other’s adjoint and the volume
integral vanishes from Equation (4). If state A is a gyrotropic plasma,
then the adjoint state B has a DC magnetic field in the opposite
direction [36] and a moving gyrotropic plasma has an adjoint medium
with both the DC magnetic field and the velocity in the opposite
directions [22]. The adjoint medium is denoted M@ and its relation

to the material matrix is given by M@ = KM7K. In an anisotropic
non-reciprocal medium the wave velocity depends on the polarization
and on the direction of propagation. If these conditions hold in one and
the same medium, the medium is called self-adjoint or reciprocal [37]

and the material matrix satisfies M = KM7K.

2.1. Source-receiver Reciprocity

The Green’s function expression of source-receiver reciprocity is
obtained taking state B as the adjoint of state A, and hence the volume
integral in the right-hand side of Equation (4) vanishes. The material
matrices are given by My = M and Mp = M(“), and the 6 x 1
source vectors §4 p(x,w) are replaced by the 6 x 6 unit strength point
source matrices Id(x — x4 g), where I is the identity matrix. The field
vector 4 (x,w) is correspondingly replaced by the 6 x 6 Green’s matrix

G(x,x4,w), while the field vector tp is replaced by the adjoint Green’s

matrix G(@ (x,xp,w). In the Green’s matrix each column represents
the Green’s functions for all the electric and magnetic field components
for a single source type and direction, while each row represents a single
field type and component for all source types and directions. If we take
x4 and xp inside D and assume that outside some sphere with finite
radius the medium is isotropic and homogeneous, then the boundary
integral also vanishes, leaving the source-receiver reciprocity relation
as

KGT (xp,x4,w)K = G® (x4, xp,w), (6)

which expresses the equality of a measurement in a certain medium
to an other measurement in its adjoint medium, with interchanged
source and receiver type, vector component and location. The matrix
K accounts for sign changes upon interchanging source and receiver.
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2.2. Power Balance

The interferometric relation that is derived in this paper originates in
the correlation-type reciprocity theorem, which reads [34],

/ (w55 +8lyiap| dx
D
_ fi’m il N, i pd2x —jw/DﬁQ (M, -Nig ) apa’x,  (7)

where the superscript t denotes matrix transposition and complex
conjugation. Poynting’s theorem is obtained when the media and the
sources in the two states are taken the same in Equation (7). From
Poynting’s theorem it can be deduced that for a lossless medium the
volume integral in the right-hand side of Equation (7) should vanish.
Hence for a lossless medium é = é7, o = fif, C €T hold. ThlS implies
that for a lossless reciprocal medium, with é = é7, 4 = ;L C = —ET
the parameters obey 3{é} = 0, S{a} = 0 and R{{} = 0 and
R{€} = 0, and it is an example of a chiral medium [38]. For a lossless
non-reciprocal medium we have S{¢} = 0 and S{€} = 0 and R{{} =
?R{ET} From energy considerations it is known that lossless media
have Hermitian electric permittivity and magnetic permeability, while
their anti-Hermitian parts represent the wave energy dissipation [39].
From the above observations it can be deduced that for reciprocal
media the frequency dependent real parts of € and fi represent reactive
and inductive processes, while their imaginary parts represent resistive

or absorptive processes [40]. For é and é it is exactly the opposite.

2.3. Correlation Type Green’s Matrix Representation

Equation (7) is used to derive a representation of the Green’s matrix in
terms of cross correlations. Point source matrices and Green’s matrices
are used to replace the source and field vectors. The points x4 and
Xp are chosen in D and both states have the same medium parameters
M A = =M B = M. With these choices the correlation type Green’s
matrix representation is given by

GT(XB, XA, w)+G(XA,XB,w): GT(X, xA,w)NxG(x, XB,w)d2x
oD

+/ Gl(x,x4,w) AMG (x, x5, w)d’x, (8)
D
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where the contrast function M is Hermitian and given by
AM = jw (M . MT) . (9)

It is noted that now both states exist in one and the same medium.
Furthermore, these states can occur simultaneously, but tha‘E is not
mandatory. No assumptions about the material matrix M have
been made. Only the anti-Hermitian part of M remains in the
representation, which was identified as the part accounting for energy
dissipation. Equation (8) represents the Green’s functions between
x4 and xp obtained from integral contributions of received Green’s
functions at the boundary 0D and in the volume D, in a general
bianisotropic medium.

3. GREEN’S FUNCTION RETRIEVAL

Equation (8) is not suitable for Green’s function retrieval, because the
Green’s functions under the integral are for receivers on the boundary
and not at the points x4 and xp. Equation (6) could be used to
interchange source and receiver positions of these Green’s functions,
but this would lead to Green’s functions in the adjoint state. Instead,
we use Equation (7) to derive an interferometric representation of the
Green’s matrix in terms of cross correlations. The points x4 and xp
are again chosen in D, but the adjoint states are chosen for both A
and B, hence again both states occur in one and the same medium
but now with M 4= M B = M), Point source matrices are used and,
as a consequence of the medium parameters, adjoint Green’s matrices
replace the source and field vectors. Equation (6) is used together with

the symmetry relations for N, and M@, Transposing both sides of
the resulting equation yields

G(xpxa,w)+ G (xaxp,w) =—¢ G(xp,x,w)N,G (x4, x,w)d?x
oD

—l—/G(XB, x,w) AMG (x4, x, w)d3x,(10)
D

where the contrast function AM is the same as in Equation (9). No

assumptions about the material matrix M has been made, other than
that its adjoint exists.

Equation (10) is a general representation of the electromagnetic
Green’s matrix, between x4 and xp located in the same medium. It
is obtained from integral contributions of cross correlations of field
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recordings from sources at the boundary, 0D and inside the volume,
D, in an arbitrary heterogeneous bianisotropic medium. It is valid for
reciprocal and non-reciprocal media. When the medium dissipates no
energy, the full Green’s matrix can be obtained from sources on the
boundary only. Hence, even for an arbitrary bianisotropic medium,
absence of energy dissipation is a sufficient condition for obtaining the
Green’s function from the cross correlation of two recordings, at x4
and xp, from sources on a boundary only.

In the time domain the Green’s matrix is causal, hence
G(xp,x4,t) = 0 for t < 0, and the time reversed Green’s function
is time reversed causal, hence G” (x4,xp, —t) = 0 for ¢t > 0. For this
reason G(xp,x4,t) or GT(x4,xp,—t) can be easily retrieved from
the left-hand side of Equation (10), G(xp,x4,t) + G (xa,xp, —t), by
taking the causal or time-reversed causal part, respectively. In general,
the application of Equation (10) requires independent measurements
of sources at all points in the domain and at the boundary of D. Apart
from the usefulness of this relation for modeling and inversion [41,42],
and for validation of numerical codes, here the primary interest is in
possible applications of remote sensing without a source.

Two types of symmetry are distinguished for the magneto-electric
tensors, i.e., C = ET for non-reciprocal media and C = —ET for
reciprocal media. To facilitate the further development the magneto-
electric parameter tensors are split in their real and imaginary parts
and two new real-valued tensors are introduced, x and &, such that
§=x+jkand ¢ = X —jK. For a rec1procal medium M = KM”K
implying that é = €7, o = X = —x" and & = k7. Tt is lossless
when 3{€} = 0, \s{p,} — 0 and x = 0. Optical activity or left- and
right—handedness in general fall under this category and media with
such properties are also engineered to make negative refractive index
materials [27]. A non-reciprocal medium is characterized by x = x’
and £ = —&T. A moving medium falls in the category of non-reciprocal
media. The permittivity and permeability tensors can be defined by
off-diagonal elements that have equal magnitude but opposite signs,
é—diag(é) = diag(é)—éT and i —diag(fr) = diag(ft) —a’. Engineered
materials in this class are also studied for possible negative refractive
indices [43].

The major difference between non-reciprocal and reciprocal media
is the accumulation of polarization rotation in non-reciprocal media
upon multiple back and forth passages through such a medium,
while the average polarization rotation is zero in multiple back and
forth passages through a reciprocal medium [44]. Finally, it is
easy to combine both classes in a so-called lossless gyrotropic chiral
medium. This is a general concept because such models allow our the
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representations to be used for moving media and Lorenz forces, electric
and magnetic birefringence, Fresnel-Fizeau effects, optical activity and
both electric and magnetic Faraday rotations [45]. Here the lossless

variant is of interest with M = MT, where dispersion can occur but no
energy is dissipated. For the situation of strongly dissipative media and
with sources on a plane boundary only, a method was developed based
on a deconvolution technique that retrieves the reflection response for
elastic and diffusive electromagnetic fields [46] and applied to ground-
penetrating radar [47].

3.1. Lossless Gyrotropic Chiral Media

General bianisotropic lossless media are defined by taking Hermitian
matrices for the medium parameters, M = M leading to AM = 0.
Note that this form allows the electric permittivity and magnetic
permeability tensors to be Hermitian tensors, é = éf and g = faf,
allowing for describing dispersive non-dissipative processes, while x
and Kk are symmetric tensors. With these symmetry conditions of the
material matrices, Equation (10) directly reduces to,

~

G(xp,x4,w)+ Gl (x4, x5,w)=— G(xp,x,w)N, Gl (x4, x,w)d?x.

oD

(11)
For lossless media the Green’s matrix between x4 and xp is obtained
from cross correlations of recordings from responses to independent
impulsive sources on 9D only. This representation is valid for non-
reciprocal and reciprocal lossless media. To make Equation (11)
suited for uncorrelated noise sources, N, must be diagonalized. This
involves the separation of contributions from the sources for inward and
outward traveling waves. This is achieved by a bi-directional modal
decomposition as outlined in [16]. It is possible when the medium
outside the boundary is homogeneous and the boundary itself is in the
far field of the receivers. Then it leads to an asymptotically exact result
in case the boundary containing the noise sources is in the far field of
the medium for which one would like to find the Green’s function. An
example of the diagonalization procedure is given in [17] for an isotropic
medium outside D. Then, e.g., the electric subset of Equation (11) is
in the time domain given by,

{GEe(xB,xA,t) + [GES(XA,XB, —t)]T}

x j{ GEe(xp, x,t)x[GF¢(x 4, x, —t)|Td?x, (12)
oD
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where time convolution is indicated by *, the Green’s function
corresponding to the electric field due to an electric current source
is represented by GF¢. If uncorrelated noise sources are present on the
boundary such that the observed electric field vector can be written as

EObS(XA,t):y{ G (x4, x,1)xS(x,t)d?x, (13)
x€0D
EObS(xB,t):j{ G(xp,x,t)*S(x', t)d*x/, (14)
x’'coD
such that
S(x,t)*S(x', —t) = C(t)d(x — x')1, (15)

where C(t) denotes the autocorrelation of the noise sources.
{67 (xm,xa,0) + [G(xa,x5, ~1)] " } #O(1)
T
o E°PS (x5, t) {EObs(xA, —t)} : (16)

For random white noise sources the autocorrelation function is given
by C(t) = §(t), and the Green’s function is retrieved.

3.2. Two Dimensional Example

To illustrate the concept a two-dimensional TE-mode example is given
in detail. The configuration consists of a lossless bianisotropic medium,
characterized by the following constitutive relations

Do(x1, 23w) =B (1, 23, w)+Eo1 Hy (21, 23, w) +Ea3 H3 (21, 23, w), (17
Bi(z1, 23, w)=C2Es (21, 23, w)+pHi (21, 23, w), (18
Bs(x1, 23, w)=C32E0 (21, 23, w)+pHs (21, 23, w), (19

~— — ~—

with real valued position dependent functions e(x1,z3) and p(z1,z3)
and the condition that &.(x1,23) = (p(x1,23). The reciprocity
theorem of the time-correlation type is used in a bounded two-
dimensional domain S, with outward unit normal n = (n,0,n3)7,
in a medium that is adjoint to the medium for which the Green’s
function is retrieved. Hence by choosing both states, as before, with
equal medium parameters we have AM = 0. The field equations for
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the adjoint medium are given by

0 —-03 O Eéa)
(—83 0 0) g@

8 0 0 Fra
1 HZ’S)
—€ G2 (32 Aéa) —Js
—jw| 1 —p 0 a» =1 o |, (20)
Sa3 0 —p fF® 0
3

where the superscript (a) denotes the field in the adjoint medium, and
the explicit expressions for the adjoint medium parameters in terms
of the actual medium parameters have been used. The reciprocity
theorem of the time correlation type of Equation (7) reduces to

S R LR R R e T
+2 jq{ i kiR {Eam} { B} Bhax, (21)

where it is understood that ny = 0 in this two-dimensional example.
The second and third equations from (20) have been used to write the
magnetic field in terms of the electric field, which is the diagonalization
procedure, mentioned above. As a consequence of this, it can be seen
in Equation (21) that for a lossless non-reciprocal medium, where &,
has a non-vanishing real part, an extra integral over the boundary
remains in the time-correlation type reciprocity theorem compared
to an ordinary anisotropic and reciprocal lossless medium. For a
bianisotropic reciprocal lossless medium R{{x.} = 0 and hence the
second integral in the right-hand side of Equation (21) vanishes. In
that case Equation (21) reduces to the same form as for an ordinary
anisotropic reciprocal lossless medium.

The next step is to assume that the medium in the neighborhood of
the boundary 0S is homogeneous. In the high-frequency approximation
the normal derivative of the electric field can be approximated as
nmﬁmEéa)(x,w) A —waéa)(x,w)/c, where ¢ is the electromagnetic
wave propagation velocity in an ordinary isotropic medium, which
approximation assumes a normally outward propagating wave and the
bianisotropy parameters are assumed to be much smaller than 1/c,
hence £9,(r2 <« eu. The small bianisotropy parameter assumption
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leads to a negligible contribution of the second integral in the right-
hand side of Equation (21) compared to the contribution from the first
integral. Applying the high frequency approximation and the small
bianisotropy parameter assumption to Equation (21), results in

S s {5} =% f (B0 Bfhax

Now choices can be made for the sources in state A as j2€ A =
d(x1—21,4)0(z3—x3,4) and in state B as jS;B = 0(z1—x1,B)d(x3—23,B).
The corresponding two-dimensional electric field Green’s function of
the adjoint medium due to an electric current source is introduced as
G®@ (x,x/,w) satisfying the wave equation given by

O\ =101 + O3u105 G2 &5
N + € 2mp ija
Jw H 2
e (52(;@’2 - €>:| G® (x, X,a w) =d(x— X/)' (23)

The electric field can be written in terms of the Green’s function as
E®(x,w) = G®(x,x/,w) and is substituted in Equation (22) to obtain

{G(a)(xB> XA, (.d)}* + é(a) (XAa XB, CU)

Exploiting the fact that G®(x/,x,w) = G(x,%x,w) all the Green’s
functions in Equation (24) belonging to the adjoint medium are
replaced with the Green’s function in the actual medium and
Equation (24) is rewritten as

R 9 . .
G (x4,%xB,w)+G(xp, X4, w)~ - G (xa,x,w)G(xp,x,w)dx, (25)
He Jos

which is the desired Green’s function retrieval equation of the Green’s
function between x 4 and x g from the product of the complex conjugate
of the Green’s function between a receiver in x4 and sources on the
boundary dS and the Green’s function between a receiver in xp and
sources on the boundary 0S. If the sources on JS are uncorrelated noise
sources such that the observed electric fields can be written analogous
to Equations (13) and (14), Equation (25) can be written in the time
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domain as

2
{G(XB’ XA, t) +G(XA7 XB) _t)} *C(t) ~ % (QDbS(XBa t)*Egbs(XAa _t)v

(26)
which is the two-dimensional scalar equivalent of the general
three-dimensional matrix relation of Equation (16) and with a
proportionality factor of —2/(uc). According to this equation, the
cross correlation of the observed electric fields at locations x4 and xpg
in a bianisotropic lossless medium, non-reciprocal or reciprocal, yields
the superposition of the medium response from a source in x4 to the
receiver in xp and the time reversed response from a source in xp to
the receiver in x4, both convolved with the autocorrelation of the noise
sources. Equation (26) is used in the numerical example.

3.3. Numerical Example

For the numerical experiment a homogeneous non-reciprocal lossless
medium is taken with real constants ¢ = 4¢g and pu = pg, where g
and uo denote the free space parameters. Equal real magneto-electric
constants used, &1 = (12 = 5 X 10~10 s/m and &3 = (32 = 0. The
domain S has a circular boundary 0dS with a radius of 50 cm, where
the 360 noise sources are located. The noise signals are filtered around
a center frequency of 10 GHz. We consider two locations x4 and xp
separated by 20 cm, each registering 24 us of noise. Initially, the two

Figure 1. The configuration for the numerical experiment in a
homogeneous bianisotropic medium with a magneto-electric coupling
coecient linking the vertical magnetic field component to the TE-mode
electric field component.
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receivers are located on a line along the direction of bianisotropy, see
Fig. 1, which is taken as the line where ¢ = 0, being the line along the
x3-axis. The first 4 ns of the noise fields recorded at the locations x4
and xp are shown in Figs. 2(a) and 2(b), respectively.

The cross correlation of the full measurement of 24 us of these
recordings is represented by the right-hand side of Equation (26).
The first +£2.5ns of the result are shown in Fig. 3(b), where the first
trace represents the correlation result for ¢ = 0. The arrival time
difference for the wave field traveling from x4 and xp and the wave
field traveling from xp and x4 is at its maximum. The wave velocity
in the 4x3-direction (wave traveling from x4 to xp) is 13.99 cm/ns
and it corresponds to the causal Green’s function with an arrival time
of 1.43ns, while the wave field traveling in the —zs-direction has a
propagating velocity of 16.26 cm/ns and the arrival time is 1.23 ns and
maps to the negative arrival time of the corresponding time-reversed
Green’s function. At 90° the wave velocity in the +xi-direction is
15.04 cm/ns and the arrival time is +1.33 ns, respectively. The other
traces represent results for repeated experiments with rotated locations
for x4 and xp as indicated in Fig. 1.

By comparing the exact result of the left-hand side of
Equation (26) in Fig. 3(a) and the retrieved result from cross
correlations of noise recordings of the right-hand side of Equation (26)
in Fig. 3(b), it can be observed that the travel times are accurately
retrieved, but small errors are made in the wave field amplitude as
shown in Fig. 4. These errors can be understood from the two
approximations. In the approximation of the amplitude factor for
the first integral in the right-hand side of Equation (21), an angle

0 1 2 3 4 0 1 2 3 4
= time (ns) —> time (ns)
(a) (b)

Figure 2. The first 4 ns of noise at the two receiver locations, Ea(x4,t)
(a), and Ea(xp,t) (b).
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independent relation was used for the normal derivative, while it
is depending on the angles ¢ and v, see Fig. 1. Secondly, the
second integral has been neglected because of the small bianisotropy
parameter assumption. The total amplitude dependence is given by

cos(1)R(&21) + cos(p)veu — €21C12, where 9 is the angle between the

x3-direction and the line from the noise source to the receiver location,

2
2

m © 3 T =
£ £
() (0] [
Eo ~ Eo
= =
|- [
. .
(V| C}L

0 100 200 300 0 100 200 300
(@) (b)

Figure 3. (a) The first £2.5ns of the left-hand side of Equation (26)
and (b) the correlation result corresponding to the right-hand side of
Equation (26). Both graphs show the result in the time domain as a
function of the angle between the x3-axis and the line containing the
two receivers.

maximum amplitude
W

0 100 200 300

— ¢

Figure 4. Maximum amplitude comparison between the exact
solution (dashed line) of the left-hand side of Equation (26) and the
retrieved result from cross correlations of the noise recordings (solid
line) in the right-hand side of Equation (26) as a function of angle
between the zz-axis and the line containing the two receivers.
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while ¢ is the angle between the normal vector and the line from
the noise source to the receiver, see Fig. 1. The approximation used
is cos(1)R(&21) + cos(p)vVepu — &1(12 & — /e, which is the result
obtained by taking cos(¢)) = 0 and e > £21(12. This means that the
largest errors will occur when the points x4 and xp are aligned along
the xs-axis, in which case v =0 and ¢ =0, or ¢y = 7 and ¢ = 7, and
the stationary points are for ¢ = w. The expected amplitude errors are
therefor primarily related to the dependence on 3 of the contributions
from the sources on the boundary. This is approximately what can be
seen in Fig. 4; maximum errors for ¢ = 0 and ¢ = 7 and minimum
errors for ¢ = 7/2 and ¢ = 37/2. The observed irregularities in the
reconstructed amplitudes are due to the noise behavior of the sources.

4. CONCLUDING REMARKS

The representations derived here for matrix Green’s function retrieval
in general bianisotropic media holds for non-reciprocal and dissipative
media. It applies to natural and engineered media such as gyrotropic
and chiral media, including metamaterials. The symmetry properties
of the material parameter tensors are given for both reciprocal and
non-reciprocal lossless media. It was shown that with these symmetry
properties the Green’s function is retrieved by correlating measured
data at two locations due to sources on a boundary only.

Not all source locations are equally important and practical
configurations with open boundaries may result in accurate results,
because the main contributions come from sources located at stationary
points [9]. The presence of weak losses has no effects on the phase of
the extracted Green’s function, while some amplitude errors but no
spurious events occur [17].

They may be useful in a wide variety of fields, ranging from
microwave to optical regimes, and the most interesting application
would be to obtain pulse-echo data from cross correlations of
noise observations for imaging and characterization of natural and
engineered materials [48].
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