Vol. 93
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-06-04
Filtering Lens Structure Based on Srrs in the Low THz Band
By
Progress In Electromagnetics Research, Vol. 93, 71-90, 2009
Abstract
A filtering lens for conical horns based on Metamaterials is presented. The paper focuses on a millimeter wave application. The metamaterial structure is composed of a printed layer of Split Ring Resonators (SRRs) on a substrate. The structure is used as a superstrate on the horn aperture. When the SRRs are excited, a filter performance arises preventing radiation in the desired frequency bands. Besides the filtering property, also a lens behavior is achieved. In this way larger gain can be achieved in both E and H planes, reducing the 3 dB beamwidth. A 6% -3 dB stop band is achieved from 73.3 GHz to 85.7 GHz. Symmetrisation of the radiation pattern up to 3 dB is accomplished and the focalization effect is achieved by emulating a hyperbolical-plane lens. Thus, a simplified system based on a conical horn can be designed by unifying the filter and lens in one electromagnetic element.
Citation
Belen Andres-Garcia, Luis Enrique Garcia-Munoz, Vicente Gonzalez-Posadas, Francisco Javier Herraiz-Martinez, and Daniel Segovia-Vargas, "Filtering Lens Structure Based on Srrs in the Low THz Band," Progress In Electromagnetics Research, Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105
References

1. Goldsmith, P. F., Quasioptical Systems, IEEE Press/Champman & Hall Publishers Series on Microwave Technology and RF, 1997.

2. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters, Wiley Series in Microwave and Optical Engineering, 2008.

3. Herraiz, F. J., L. E. Garcia-Munoz, V. Gonzalez-Posadas, and D. Segovia-Vargas, "Multi-frequency and dual mode patch antennas partially filled with left-handed structures," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, Part 2, 2527-2539, 2008.

4. Herraiz-Martinez, F. J., E. Ugarte-Munoz, V. Gonzalez-Posadas, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Self-diplexed patch antennas based on metamaterials for RFID Active systems," IEEE Transactions on Microwave Theory and Techniques, Special Issue on RFID, accepted for publication.

5. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, PIER 78, No. 73-81, 2008 .

6. Si, L. M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, PIER 83, No. 133-146, 2008.

7. Castro-Galan, D., L. E. Garcia-Munoz, D. Segovia-Vargas, and V. Gonzalez-Posadas, "Diversity monopulse antenna based on a dual-frequency and dual mode clrh rat-race coupler," Progress In Electromagnetics Research B, Vol. 8, 87-106, 2009.

8. Chen, H. T., W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O'Hara, and A. J. Taylor, "Electromagnetic metamaterials for terahertz applications," Terahertz Science and Technology, Vol. 1, No. 1, March 2008.

9. Duan, Z. Y., B. I. Wu, S. Xi, H. S. Chen, and M. Chen, "Research progress in reversed cherenkov radiation in double-negative metamaterials ," Progress In Electromagnetics Research, PIER 90, No. 75-87, 2009.

10. Liu, Y. H. and X. P. Zhao, "Investigation of anisotropic negative permeability medium cover for patch antenna," IET Microw. Antennas Propag., Vol. 2, No. 7, 737-744, 2008.
doi:10.1049/iet-map:20070198

11. Munk, B. A., Frequency Selective Surfaces, John Wiley & Sons, 2000.

12. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-netagive metamaterials," Progress In Electromagnetics Research, PIER 82, No. 241-255, 2008.

13. Caloz, C. and T. Itoh, Electromagnetic Metamaterials. Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.

14. Herraiz, F. J., L. E. Garcia-Munoz, V. Gonzalez-Posadas, D. Segovia-Vargas, D. Gonzalez-Ovejero, and C. Craeye, "Arrays of dual-band printed dipoles loaded with metamaterial particles," Third European Conference on Antennas and Propagation, Berlin, March 2009.

15. Wu, B. I. and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, PIER 84, No. 279-287, 2008.

16. Liu, S. H., C. H. Liang, W. Ding, L. Chen, and W. T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, PIER 76, No. 467-475, 2007.

17. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, PIER 85, No. 381-391, 2008.