Vol. 93
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-06
A New Look at Numerical Analysis of Uniform Fiber Bragg Gratings Using Coupled Mode Theory
By
Progress In Electromagnetics Research, Vol. 93, 385-401, 2009
Abstract
The coupled mode theory (CMT) is used to analyze uniform Fiber Bragg gratings. The multi-mode CMT is expressed as the first-order vector ordinary differential equations (ODEs) with coefficients depending on the propagation distance. We show in this paper that by changing variables, the original couple mode equations (CMEs) can be re-casted as constant coefficient ODEs. The eigenvalue and eigenvector technique (EVVT), the analytic method for solving constant coefficient ODEs, is then applied to solve the coupled mode equations. Furthermore, we also investigate the application of Runge-Kutta method (RKM) to the calculation of the global transfer-function matrix for CMEs. We compare the transmission and the reflection spectra obtained by EVVT with those by RKM. Both results agree within machine accuracy. Numerical simulations conclude that solving constant coefficient ODEs improves the speed and accuracy of solutions to the original CMEs.
Citation
Jiun-Jie Liau, Nai-Hsiang Sun, Shih-Chiang Lin, Ru-Yen Ro, Jung-Sheng Chiang, Chung-Long Pan, and Hung-Wen Chang, "A New Look at Numerical Analysis of Uniform Fiber Bragg Gratings Using Coupled Mode Theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102
References

1. Erdogan, T., "Fiber grating spectra," J. Lightwave Technol., Vol. 15, 1277-1294, 1997.
doi:10.1109/50.618322

2. Erdogan, T., "Cladding-mode resonances in short- and long-period fiber grating filters," J. Opt. Soc. Am. A, Vol. 14, 1760-1773, 1997.
doi:10.1364/JOSAA.14.001760

3. Prokopovich, D. V., A. V. Popov, and A. V. Vinogradov, "Analytical and numerical aspects of Bragg fiber design," Progress In Electromagnetics Research B, Vol. 6, 361-379, 2008.
doi:10.2528/PIERB08031221

4. He, M., J. Jiang, J. Han, and T. Liu, "An experiment research on extend the range of fiber Bragg grating sensor for strain measurement based on CWDM," Progress In Electromagnetics Research Letters, Vol. 6, 115-121, 2009.
doi:10.2528/PIERL08123105

5. Moghimi, M. J., H. Ghafoori-Fard, and A. Rostami, "Analysis and design of all-optical switching in apodized and chirped Bragg gratings," Progress In Electromagnetics Research B, Vol. 8, 87-102, 2008.
doi:10.2528/PIERB08041303

6. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, PIER 64, 191-204, 2006.

7. Liau, J.-J., N.-H. Sun, R.-Y. Ro, P.-J. Chiang, and S.-C. Lin, "Numerical approaches for solving coupled mode theory --- Part I: Uniform fiber Bragg gratings," Progress In Electromagnetics Research Symposium (PIERS), 2A6-3, Hangzhou, China, 2008.

8. Chang, H.-W. and W.-C. Cheng, "Analysis of dielectric waveguide termination with tilted facets by analytic continuity method," Journal of Electromagnetic Waves and Applications, Vol. 21, 1621-1630, 2007.

9. Sha, W., X. L. Wu, Z. X. Huang, and M. S. Chen, "Waveguide simulation suing the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
doi:10.2528/PIERB09012302

10. Forslund, O. and S. He, "Electromagnetic scattering from an inhomogeneous grating using a wave-splitting approach," Progress In Electromagnetics Research, PIER 19, 147-171, 1998.

11. Hashish, E. A., "Forward and inverse scattering from an inhomogeneous dielectric slab," Journal of Electromagnetic Waves and Applications, Vol. 17, 719-736, 2003.
doi:10.1163/156939303322226374

12. Watanabe, K., "Fast converging and widely applicable formulation of the differential theory for anisotropic gratings," Progress In Electromagnetics Research, PIER 48, 279-299, 2004.

13. Watanabe, K. and K. Kuto, "Numerical analysis of optical waveguides based on periodic Fourier transform," Progress In Electromagnetics Research, PIER 64, 1-21, 2006.

14. Saleh, B. E. A. and M. C. Teich, Fundamental of Photonics, John Wiley & Son, 1991.

15. Burden, R. L. and J. D. Faires, Numerical Analysis, Brooks/Cole, Pacific Grove, 2001.