Vol. 8
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-05-25
Uniaxial PML Absorbing Boundary Condition for Truncating the Boundary of DNG Metamaterials
By
Progress In Electromagnetics Research Letters, Vol. 8, 125-134, 2009
Abstract
The conventional perfectly matched layer (PML) absorbing boundary condition is shown to be unstable when it is extended to truncate the boundary of the double negative (DNG) medium. It is a consequence of the reverse directions of the Poynting and phase-velocity vectors of plane waves propagating in such material. In this paper, a modified uniaxial PML (UPML), which is stable for the DNG medium, is derived. The auxiliary differential equation technique is introduced to derive the discrete field-update equations of DNG-UPML. Numerical results demonstrate the effectiveness and stability of the new UPML for the DNG medium.
Citation
Kuisong Zheng, Wai-Yip Tam, De-Biao Ge, and Jia-Dong Xu, "Uniaxial PML Absorbing Boundary Condition for Truncating the Boundary of DNG Metamaterials," Progress In Electromagnetics Research Letters, Vol. 8, 125-134, 2009.
doi:10.2528/PIERL09030901
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission though a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

5. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letter, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

6. Wittwer, D. C. and R. W. Ziolkowski, "Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 192-199, 2000.
doi:10.1109/8.833068

7. Wittwer, D. C. and R.W. Ziolkowski, "Maxwellian material based absorbing boundary conditions fro lossy media in 3D," IEEE Trans. Antennas Propag., Vol. 48, 200-213, 2000.
doi:10.1109/8.833069

8. Berenger, J. P., "A perfectly matched layer for the absorbing EM waves," J. Computat. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

9. Dong, X. T., X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, "Perfectly matched layer-absorbing boundary condition for left-handed materials," IEEE Microwave Wireless Compon. Lett., Vol. 14, 301-303, 2004.
doi:10.1109/LMWC.2004.827104

10. Cummer, S. A., "Perfectly matched layer behavior in negative refractive index materials," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 172-175, 2004.
doi:10.1109/LAWP.2004.833710

11. Shi, Y., Y. Li, and C. H. Liang, "Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium," Microwave Opt. Technol. Lett., Vol. 48, No. 1, 57-62, 2006.
doi:10.1002/mop.21260

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2005.

13. Ziolkowski, R. W. and A. D. Kipple, "Causality and double-negative metamaterials," Physical Review E, Vol. 68, 026615, 2003.
doi:10.1103/PhysRevE.68.026615

14. Gedney, S. D., "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249