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Abstract—The conventional perfectly matched layer (PML) absorb-
ing boundary condition is shown to be unstable when it is extended
to truncate the boundary of the double negative (DNG) medium. It
is a consequence of the reverse directions of the Poynting and phase-
velocity vectors of plane waves propagating in such material. In this
paper, a modified uniaxial PML (UPML), which is stable for the DNG
medium, is derived. The auxiliary differential equation technique is in-
troduced to derive the discrete field-update equations of DNG-UPML.
Numerical results demonstrate the effectiveness and stability of the
new UPML for the DNG medium.

Corresponding author: K. S. Zheng (kszheng@nwpu.edu.cn).



126

1. INTRODUCTION

The plane-wave propagation in a material whose permittivity and
permeability are assumed to be simultaneously negative is theoretically
investigated by Veselago [1]. Recently, several papers have exposed
the usefulness of double negative (DNG) medium with negative
permittivity and permeability [2–5]. However, in order to further
study unusual electromagnetic phenomena in DNG medium, full-wave
numerical simulations have become more and more important. The
FDTD method is a good choice for these electromagnetic problems.
The absorbing boundary condition in FDTD is required to truncate
the computation domain without reflection in the simulation of DNG
medium properties and applications. An absorbing boundary condition
for DNG medium has been proposed [6, 7]. Since first introduced
by Berenger in 1994 [8], the perfectly matched layer (PML) has
become the most popular and efficient absorbing boundary condition.
Unfortunately, standard versions of PML are inherently unstable
when they are extended to truncate the boundary of DNG medium
without any modification [9, 10]. Recently, a nearly PML absorbing
boundary condition for DNG medium is discussed, and 50-cell layers
for NIMPML are used to truncate the DNG medium [10]. Later, a
modified PML absorbing boundary condition based on the complex-
coordinate stretching variables has been proposed for PSTD method
[11]. In this paper, a modified uniaxial PML (UPML) which is stable
for the DNG medium is presented. It is worth noting that only 10-
cell layers for UPML are used and provide a clearly reduced error to
truncate the DNG medium.

First, we adopt the UPML medium for truncating the DNG
medium. Then, by using the auxiliary differential equation technique,
the efficient DNG-UPML is implemented in the FDTD method.
Finally, the relative error of DNG-UPML in the one-dimensional case
is calculated, and the focusing property of a DNG medium is also
simulated. A numerical example was used to demonstrate the stability
of the proposed DNG-UPML absorbing boundary condition.

2. NUMERICAL METHOD

2.1. Maxwell’s Equations in the DNG Medium

The time-harmonic Maxwell’s curl equations to be solved are:

jωεE = ∇× H (1)
−jωμH = ∇× E (2)
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By replacing the derivatives with their central finite difference
counterparts, the FDTD formulations of (1) and (2) can be obtained
easily. For a lossy DNG material, negative permittivity and
permeability are realized using the Drude medium model as follows:

ε(ω) = ε0εr(ω) = ε0

(
1 +

ω2
pe

ω(jΓe − ω)

)
(3)

μ(ω) = μ0μr(ω) = μ0

(
1 +

ω2
pm

ω(jΓm − ω)

)
(4)

2.2. UPML for the DNG Medium

For a matched condition, the permittivity and permeability in the
UPML can be written as ε(ω) = ε0εr(ω)s and μ(ω) = μ0μr(ω)s, where
s is the diagonal tensor defined by:

s =

⎡
⎢⎣

syszs
−1
x 0 0

0 sxszs
−1
y 0

0 0 sxsys
−1
z

⎤
⎥⎦ (5)

In order to truncate the DNG medium, a good choice for si (i = x, y, z)
in (5) is:

si = κi +
σi

jωε0
√

μrεr
= κi +

σi

jωε0

(
1 +

ω2
p

ω(jΓ − ω)

) (6)

where ωp = ωpe = ωpm and Γ = Γm = Γe.
From (1) to (6), the Ampere’s law in a matched DNG-UPML can

be expressed as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Hz

∂y
− ∂Hy

∂z
∂Hx

∂z
− ∂Hz

∂x
∂Hy

∂x
− ∂Hx

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= jωε0εr(ω)

⎡
⎢⎢⎢⎢⎢⎣

sysz

sx
0 0

0
sxsz

sy
0

0 0
sxsy

sz

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎣

Ex

Ey

Ez

⎤
⎥⎦ (7)

where the assumed tensor coefficients in x, y, and z directions for the
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DNG medium are: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sx = κx +
σx

jωε0
√

μrεr

sy = κy +
σy

jωε0
√

μrεr

sz = κz +
σz

jωε0
√

μrεr

(8)

In order to derive the discrete field-update equations for (7), we
adopt auxiliary differential equation FDTD techniques that permit
direct time integration of the full-vector Maxwell’s equations [12].
Now, substituting (8) into (7), the system of equations in (7) can be
transformed into time domain and be discretized on the standard Yee
lattice. This yields time-stepping expressions for Ex, Ey, and Ez. For
example, the Ex updating equation is given by:

En+1
x =

1
b1

2Δt
+

b2

Δt2
+

b3

4

[(
2b2

Δt2
− b3

2

)
En

x +
(

b1

2Δt
+

b2

Δt2
+

b3

4

)
En−1

x

+
(

a1

2Δt
+

a2

Δt2
+

a3

4

)
Rn+1

x +
(

a3

2
− 2a2

Δt2

)
Rn

x

+
(

a2

Δt2
− a1

2Δt
+

a3

4

)
Rn−1

x

]
(9)

where the parameters are:{
a1 = σx + κxΓ, a2 = κx, a3 = σxΓ + κxω2

p

b1 = σy + κyΓ, b2 = κy, b3 = σyΓ + κyω
2
p

(10)

The auxiliary field variable Rx can be updated using:

Rn+1
x =

(
2ε0κz − ε0σzΔt − βdΔt

2ε0κz + ε0σzΔt + βdΔt

)
Rn

x

+
2Δt

2ε0κz + ε0σzΔt + βdΔt

[
(∇× H)|nx − 1

2
(kd + 1)Jn

x

]
(11)

where the expression of (∇ × H)|nx denotes the x-directed curl of
magnetic field quantity calculated at the time point tn = nΔt. The
updating equation of the variable Jx can be written as:

Jn+1
x = kdJ

n
x + βd

(
Rn+1

x + Rn
x

)
(12)
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where the parameters kd and βd are defined as:⎧⎪⎪⎨
⎪⎪⎩

kd =
2 − ΓΔt

2 + ΓΔt

βd =
ε0ω

2
pκzΔt

2 + ΓΔt

(
Rn+1

x + Rn
x

) (13)

Similar expressions can be derived for the remaining two E-
field components in the lossy DNG-UPML. Overall, updating the
components of E in the DNG-UPML requires three steps. First,
obtaining the new values of the components of J according to (12):
second, using these new J components to obtain the new values of
the components of R according to (11): and third, using these new R
components to obtain the new values of the E components according
to (9).

A similar three-step procedure can be derived to update the
components of H in the DNG-UPML using the same approach.

3. NUMERICAL RESULTS

In this section, numerical results are presented in both one-dimensional
and two-dimensional cases. The relative error of DNG-UPML
absorbing boundary condition in one-dimensional case is also discussed.

3.1. One-dimensional Case

The time function of line electric-current source is given by the multiple
cycle m-n-m pulse [13]. It is a sinusoidal signal that has a smooth
windowed turn-on for m cycles, constant amplitude for n cycles, and
then a smooth windowed turn-off for m cycles. Hence, it has an
adjustable bandwidth centered at the frequency f0, as shown in Fig. 1.

First, we show the performance of the DNG-UPML. The one-
dimensional structure under study is shown in Fig. 2. The total space
of the computational domain is filled with the DNG medium, where
the parameters in (3) and (4) are as follows: Γe = Γm = Γ = 0 and
ωpe = ωpm = ωp = 2.665 × 1011 rad/s. The UPML ABC is used to
truncate the boundary of DNG medium. An x-directed electric line
current source is located at the center of a 4000-cell one dimensional
FDTD grid. The center frequency f0 of the current source is 30 GHz,
and its time function is the 5-10-5 pulse. In particular, the values of
Re(εr) and Re(μr) at the center frequency f0 are approximately −1.0.

The FDTD grid has Δz = 0.01 cm and a time-step of 0.5 times the
Courant limit. The E-field is probed at point A, as shown in Fig. 2.
Point A is one cell from the right-side PML boundary. Time-stepping
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Figure 1. Waveform of the electric current source in time domain.
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Figure 2. Sketch of numerical simulation.

runs over 22,000 iterations, well past the steady-state response. 10-
cell UPML ABCs are used with a cubic polynomial increase of σ
with distance and with σmax = σopt [14], and κmax = 1, yielding the
properties of UPML.

The reference solution Eref |nk at grid location k and time-step n
is obtained using a 40,000-cell grid. An identical current source is
centered within this grid, and the field-observation point A is at the
same position relative to the source as in the test grid. The reference
grid is large enough such that there are no reflections from its outer
boundaries during the time-stepping span of interest. This allows a
relative error to be defined as:

Rerror|nk = 20 log10

(
|E|nk − Eref |nk |

/
|Eref max|k

)
(14)

where Eref max|k is the maximum amplitude of the reference field at the
location k, as observed during the time-stepping span of interest.
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Figure 3. Stable time-domain field for DNG-UPML.
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Figure 4. Relative error at point A for 10-cell PMLs.

Fig. 3 shows the DNG-UPML simulation is stable enough to
compute a solution for at least 100,000 time steps, which is equal
to 16.7 ns in the absolute time domain. Fig. 4 depicts the relative
error at point A over 22,000 time-steps of the FDTD run for 10-cell
PMLs. From Fig. 4, we see that the DNG-UPML absorbing boundary
condition achieves a very small reflection at the boundary. The
maximum relative error is below 80 dB. This accuracy is good enough
to simulate a lot of numerical simulations of the electromagnetic
problems in DNG medium.
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Figure 5. Simulation of the focus property of DNG medium. (a)
The geometry of the computation domain. (b) Snapshot taken at
t = 5925Δt.

3.2. Two-dimensional Case

In this section, we consider the perfect lens focusing property of DNG
medium. A two-dimensional TM wave is considered. The frequency of
the harmonic line current source is set to 30 GHz. The two dimensional
geometry under study is shown in Fig. 5(a), and the sizes of the
geometry and the computation domain are also indicated. The cell
sizes are Δx = Δy = 0.02 cm. The time step is set to be Δt = Δx/(2c).
The FDTD grid is terminated with standard PML and DNG-UPML
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derived above. Both are ten cells long with a 4-power polynomial
increase of σ with distance and with σmax = σopt, and κmax = 1. In
order to view the perfect lens foci, the parameters of the lossless DNG
slab are similar to that in the one-dimensional case. The slab is thus
d = 100Δx thick in the direction of propagation and the source-to-slab
distance is 50Δx. A snapshot of the electric field intensity Ez over the
whole computation domain is taken at t = 5925Δt, as shown in Fig.
5(b). The foci inside and outside the DNG slab can be seen clearly
because of the effect of negative refraction in the DNG medium. It is
worth noting that the DNG-UPML simulation applied to truncating
the DNG medium is also stable in the two-dimensional case.

4. CONCLUSION

In this paper, a new DNG-UPML absorbing boundary condition has
been derived in order to overcome the instability of standard PML for
truncating the boundary of the DNG medium. Using the auxiliary
differential equation approach, the efficient formulations of the DNG-
UPML are presented. Numerical FDTD simulations of these one-
dimensional and two-dimensional cases are provided. Numerical results
have demonstrated the accuracy and stability of the DNG-UPML
absorbing boundary condition.
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