1. Schot, S. H., "Jerk: The time rate of change of acceleration," Am. J. Phys., Vol. 46, 1090-1094, 1978.
doi:10.1119/1.11504
2. Sandin, T. R., "The jerk," The Physics Teacher,, Vol. 28, 36-40, 1990.
doi:10.1119/1.2342925
3. Linz, S. J., "Nonlinear dynamical models and jerky motion," Am. J. Phys., Vol. 65, 523-526, 1997.
doi:10.1119/1.18594
4. Sprott, J. C., "Some simple chaotic jerk function," Am. J. Phys., Vol. 65, 537-543, 1997.
doi:10.1119/1.18585
5. VonBaeyer, H. C., "All shook up: The jerk, an old-fashioned tools of physics, find new applications in the theory chaos," The Sciences, Vol. 38, 12-14, 1998.
6. Ma, S. J., M. P. Liu, and P. T. Huang, "The form of three-order Lagrangian equation in relative motion," Chin. Phys., Vol. 14, 244-246, 2005.
doi:10.1088/1009-1963/14/2/004
7. Ma, S. J., W. G. Ge, and P. T. Huang, "The three-order Lagrangian equation for mechanical systems of variable mass," Chin. Phys., Vol. 14, 879-881, 2005.
doi:10.1088/1009-1963/14/5/003
8. Ma, S. J., X. H. Yang, and R. Yang, "Noether symmetry of three-order Lagrangian equations," Commun. Theor. Phys., Vol. 46, 309-312, 2006.
doi:10.1088/0253-6102/46/2/026
9. Ma, S. J., X. H. Yang, R. Yang, and P. T. Huang, "Lie symmetry and conserved quantity of three-order Lagrangian equations for non-conserved mechanical system," Commun. Theor. Phys., Vol. 45, 350-352, 2006.
doi:10.1088/0253-6102/45/2/031
10. Hamel, G., Theoretische Mechanik, Springer-Verlag, 1949.
11. Linz, S. J., "Newtonian jerky dynamics: Some general properties," Am. J. Phys., Vol. 66, 1109-1114, 1998.
doi:10.1119/1.19052
12. Chlouverakis, K. E. and J. C. Sprott, "Chaotic hyperjerk system," Chaos, Solitons and Fractals, Vol. 28, 739-747, 2006.
doi:10.1016/j.chaos.2005.08.019
13. Linz, S. J., "On hyperjerk systems," Chaos, Solitons and Fractals, Vol. 37, 741-747, 2008.
doi:10.1016/j.chaos.2006.09.059
14. Appell, P., Traite de Mecanique Rationnelle II, Gauthier-Villars, 1904.
15. Pars, L. A., A Treatise on Analytical Dynamics, Heinemann, 1965.
16. Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Univ. Press, 1937.
17. Gottlieb, H. P. W., "Harmonic balance approach to periodic solutions of non-linear jerk equations," J. Sound. Vib., Vol. 271, 671-683, 2004.
doi:10.1016/S0022-460X(03)00299-2
18. Gottlieb, H. P. W., "Harmonic balance approach to limit cycles or non-linear jerk equations," J. Sound. Vib., Vol. 297, 243-250, 2006.
doi:10.1016/j.jsv.2006.03.047
19. Linz, S. J., "No-chaos criteria for certain jerky dynamics," Phys. Lett. A, Vol. 275, 204-210, 2000.
doi:10.1016/S0375-9601(00)00576-4
20. Sprott, J. C. and S. J. Linz, "Algebraically simple chaotic flows," Int. J. Chaos Theory. Appl., Vol. 5, 3-22, 2000.
21. Patidar, V. and K. K. Sud, "Bifurcation and chaos in simple jerk dynamical systems," Pramana-J. Phys., Vol. 64, 75-93, 2005.
doi:10.1007/BF02704532