Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-08-23
New Concepts in Electromagnetic Jerky Dynamics and Their Applications in Transient Processes of Electric Circuit
By
Progress In Electromagnetics Research M, Vol. 8, 181-194, 2009
Abstract
In this paper, jerk function for a transient process of RL circuit is investigated. Some new concepts such as time rate of change of induced emf, time rate of change of displacement current, and Appell function have been introduced for the first time in electromagnetic jerky dynamics. The problems on Appell function of several simple models in electromagnetic jerky dynamics are discussed. In the last conclusions and remarks are also presented.
Citation
Xue-Xiang Xu, Shan-Jun Ma, and Pei-tian Huang, "New Concepts in Electromagnetic Jerky Dynamics and Their Applications in Transient Processes of Electric Circuit," Progress In Electromagnetics Research M, Vol. 8, 181-194, 2009.
doi:10.2528/PIERM09021501
References

1. Schot, S. H., "Jerk: The time rate of change of acceleration," Am. J. Phys., Vol. 46, 1090-1094, 1978.
doi:10.1119/1.11504

2. Sandin, T. R., "The jerk," The Physics Teacher,, Vol. 28, 36-40, 1990.
doi:10.1119/1.2342925

3. Linz, S. J., "Nonlinear dynamical models and jerky motion," Am. J. Phys., Vol. 65, 523-526, 1997.
doi:10.1119/1.18594

4. Sprott, J. C., "Some simple chaotic jerk function," Am. J. Phys., Vol. 65, 537-543, 1997.
doi:10.1119/1.18585

5. VonBaeyer, H. C., "All shook up: The jerk, an old-fashioned tools of physics, find new applications in the theory chaos," The Sciences, Vol. 38, 12-14, 1998.

6. Ma, S. J., M. P. Liu, and P. T. Huang, "The form of three-order Lagrangian equation in relative motion," Chin. Phys., Vol. 14, 244-246, 2005.
doi:10.1088/1009-1963/14/2/004

7. Ma, S. J., W. G. Ge, and P. T. Huang, "The three-order Lagrangian equation for mechanical systems of variable mass," Chin. Phys., Vol. 14, 879-881, 2005.
doi:10.1088/1009-1963/14/5/003

8. Ma, S. J., X. H. Yang, and R. Yang, "Noether symmetry of three-order Lagrangian equations," Commun. Theor. Phys., Vol. 46, 309-312, 2006.
doi:10.1088/0253-6102/46/2/026

9. Ma, S. J., X. H. Yang, R. Yang, and P. T. Huang, "Lie symmetry and conserved quantity of three-order Lagrangian equations for non-conserved mechanical system," Commun. Theor. Phys., Vol. 45, 350-352, 2006.
doi:10.1088/0253-6102/45/2/031

10. Hamel, G., Theoretische Mechanik, Springer-Verlag, 1949.

11. Linz, S. J., "Newtonian jerky dynamics: Some general properties," Am. J. Phys., Vol. 66, 1109-1114, 1998.
doi:10.1119/1.19052

12. Chlouverakis, K. E. and J. C. Sprott, "Chaotic hyperjerk system," Chaos, Solitons and Fractals, Vol. 28, 739-747, 2006.
doi:10.1016/j.chaos.2005.08.019

13. Linz, S. J., "On hyperjerk systems," Chaos, Solitons and Fractals, Vol. 37, 741-747, 2008.
doi:10.1016/j.chaos.2006.09.059

14. Appell, P., Traite de Mecanique Rationnelle II, Gauthier-Villars, 1904.

15. Pars, L. A., A Treatise on Analytical Dynamics, Heinemann, 1965.

16. Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Univ. Press, 1937.

17. Gottlieb, H. P. W., "Harmonic balance approach to periodic solutions of non-linear jerk equations," J. Sound. Vib., Vol. 271, 671-683, 2004.
doi:10.1016/S0022-460X(03)00299-2

18. Gottlieb, H. P. W., "Harmonic balance approach to limit cycles or non-linear jerk equations," J. Sound. Vib., Vol. 297, 243-250, 2006.
doi:10.1016/j.jsv.2006.03.047

19. Linz, S. J., "No-chaos criteria for certain jerky dynamics," Phys. Lett. A, Vol. 275, 204-210, 2000.
doi:10.1016/S0375-9601(00)00576-4

20. Sprott, J. C. and S. J. Linz, "Algebraically simple chaotic flows," Int. J. Chaos Theory. Appl., Vol. 5, 3-22, 2000.

21. Patidar, V. and K. K. Sud, "Bifurcation and chaos in simple jerk dynamical systems," Pramana-J. Phys., Vol. 64, 75-93, 2005.
doi:10.1007/BF02704532