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NEW CONCEPTS IN ELECTROMAGNETIC JERKY DY-
NAMICS AND THEIR APPLICATIONS IN TRANSIENT
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X.-X. Xu †, S.-J. Ma, and P.-T. Huang
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Abstract—In this paper, jerk function for a transient process of RL
circuit is investigated. Some new concepts such as time rate of change
of induced emf, time rate of change of displacement current, and Appell
function have been introduced for the first time in electromagnetic
jerky dynamics. The problems on Appell function of several simple
models in electromagnetic jerky dynamics are discussed. In the last
conclusions and remarks are also presented.

1. INTRODUCTION

Jerk is a familiar term in ordinary language, though its exact origin
as a physical concept is obscure. In 1928, engineer Melchior defined
the concept of jerk for the first time. Schot [1] and Sandin [2] also
discuss the jerk. Jerk is a mechanical term for a specific aspect of
motion: the rate of change of acceleration with time. The concept is a
natural extension of a line of thinking that originated with Galileo.
In 1997, Linz [3] and Sprott [4] generalize the conception of jerk
into the general jerk function (the third-order time derivative of any
independent variable). The jerk functions that reflect jerky motion are
determined by third-order differential equations. The new systems of
jerk function are called jerky dynamicical systems. As vonBaeyer [5]
said, the articles with these funny titles of jerk function and jerky
motion illustrate in a particularly vivid way the revolution that is
transforming the ancient study of mechanics into a new science —
one that is not just narrowly concerned with the motion of physical
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bodies, but that deals with changes of all kinds. As we all know, the
instability often associated with a change of a change of a change. Even
the important quantity of jerk for describing the financial well-being
of a worker can faithfully portray a change of a change of a change of
a person’s financial history.

Following Linz, Sprott and vonBaeyer, in this paper, some new
concepts in electromagnetic jerky dynamics will firstly be introduced.
The problems of electromagnetic jerky dynamics will be discussed.
That is to say, the concepts of jerky dynamics will be extended and
discussed in the transient process of some circuit.

2. SOME NEW CONCEPTS IN ELECTROMAGNETIC
JERKY DYNAMICS

2.1. The Jerk Function of a Transient Process

We consider a simple circuit with a resistor (R), an inductor (L), a
battery (ε) and a switch (K) connected in a loop. When the switch is
on, the current change from zero to the maximum value Im = ε/R for
the electromagnetic inertia of the inductor. This is a kind of transient
process of RL circuit. In the process being discussed, according to the
second Kirchhoff law, the sum of the voltage drops around any loop is
zero. Then

ε− Lİ = IR (1)

with the dot denoting the time derivative. Integrating the Equation,
the formula of increasing current is as follow.

I = Im

(
1− e−

R
L

t
)

(2)

Contrasting the formula of increasing velocity in the model of
terminal velocity

v = vm

(
1− e−

γ
m

t
)

(3)

Eq. (2) and Eq. (3) have the identical form. There is an analogy
between increasing velocity and increasing current. Making twice time
derivative to Eq. (3), the jerk function of the process of increasing
velocity can be written as

j = v̈ = −vmγ2

m2
e−

γ
m

t (4)

This shows that the process of increasing velocity is a kind of motion
with variable acceleration. Making twice time derivative to Eq. (2),
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the jerk function of the process of increasing current can be written as

j =
...
q = Ï = −ImR2

L2
e−

R
L

t (5)

The third order time differential of charge is nonzero. This shows that
the process of increasing current is also a kind of jerky motion.

2.2. Time Rate of Change of Induced Emf and Magnetic
Appell Function

For further interpreting the physical meaning of jerk function, we make
the time derivative of electromagnetic induction law εi = −Lİ and have
the expression

ε̇i = −LÏ = −Lj (6)

with ε̇i denoting the time rate of change of emf. Eq. (6) is called the
formula of time rate of change of induced emf. This is exactly the
physical meaning of jerk function j = Ï that is the electromagnetic
induction changing with time. By the way, even having no RL circuit,
there are the problems of electromagnetic induction changing with
time. It embodies the time rate of change of eddy electric field and has
special significance in the betatron.

There is still an analogy between j = Ï and j = v̈. Ḟ = mv̈ = mj
is called the formula of time rate of change of force whose physical
meaning is the force changing with time. Integrating Ḟ = mv̈ = mj
with respective to the velocity, we have

∫ v

v0

Ḟ dv =
∫ v

v0

mv̈dv =
∫ v̇

v̇0

mv̇dv̇ =
1
2
mv̇2 − 1

2
mv̇2

0 = Ak −Ak0 (7)

Eq. (7) is the theorem of Appell function in mechanical jerky process of
motion with variable acceleration. Where Ak0 = 1

2mv̇2
0 and Ak = 1

2mv̇2

are respectively the initial and the final kinetic Appell function [10].
Following Eq. (7) and integrating Eq. (6) with respective to the current,
we have
∫ I

I0

ε̇idI =
∫ I

I0

−LÏdI =
∫ İ

İ0

−Lİdİ = −
(

1
2
Lİ2 − 1

2
Lİ2

0

)
= −(Am −Am0)

(8)
Eq. (8) is the theorem of Appell function on magnetic jerky process
in inductor L. Where Am0 = 1

2Lİ2
0 and Am = 1

2Lİ2 are the initial
and the final magnetic Appell function respectively. We know that
the dimension of self inductance is L2MT−2I−2 with L, M , T and I
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denoting the length, the mass, the time and the current. Obviously
there is an analogy between the magnetic Appell function and the
kinetic Appell function Ak = 1

2mv̇2. And they have the same
dimension of L2MT−4. Because the magnetic and kinetic Appell
function have the same dimension, they can be classified into the state
function of jerky dynamics.

2.3. Time Rate of Change of Displacement Current and
Electric Appell Function

In electromagnetism the capacitance (C) with voltage (U) has electric
energy We = 1

2CU2. And the inductance (L) with current (I) has
magnetic energy Wm = 1

2LI2. Following definition of magnetic Appell
function Am = 1

2Lİ2 from Eq. (8), can we define electric Appell
function? The answer is affirmative.

Now we consider the charging and discharging process of capacitor.
Let the electric Appell function be Ae = 1

2CU̇2, we find that the
dimension of Ae is L2MT−4. Where the dimensions of the capacitance
(C) and the time rate of change of voltage (U̇) are L−2M−1T 4I2

and L2MT−4I−1 respectively. The dimension of Ae is exactly the
dimension of Ak and Am. Following Eqs. (7) and (8) and integrating
time rate of change of displacement current (İd) with respective to
voltage (U), we have

∫ U

U0

İddU =
∫ U

U0

C
dU̇

dt
dU

=
∫ U̇

U̇0

CU̇dU̇ =
1
2
CU̇2 − 1

2
CU̇2

0 = Ae −Ae0 (9)

Eq. (9) is the theorem on Appell function in electric jerky process in
capacitor C. Where Ae0 = 1

2CU̇2
0 and Ae = 1

2CU̇2 are respectively the
initial and the final electric Appell function. That is to say, the process
of charging and discharging of capacitor is also classified into jerky
motion. So Appell function can be defined as common measurement
of jerky motion.

2.4. The Appell Function of Electric Field and Magnetic
Field

According to the electric Appell function Ae = 1
2CU̇2 and using a

parallel plate capacitor, we further have the Appell function of electric
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field. That is as follow

Ae =
1
2
CU̇2 =

1
2

εs

d
Ė2d2 =

1
2
ḊĖV (10)

where V = sd is the volume between two plates, and ε denoting
permittivity. From Eq. (10), the density of Appell function of electric
field can be defined as

ae =
Ae

V
=

1
2
ḊĖ (11)

and from Eq. (11), we can compute Appell function of electric field for
any area

Ae =
∫

V
aedV (12)

By the same token, according to the magnetic Appell function Am =
1
2Lİ2 and applying to a solenoid, we further have the Appell function
of magnetic field. That is as follow

Am =
1
2
Lİ2 =

1
2
µn2V İ2 =

1
2
ḂḢV (13)

with V denoting the volume of the solenoid, µ denoting permeability
and n denoting the number of turns per unit length. From Eq. (13),
the density of Appell function of magnetic field can be defined as

am =
Am

V
=

1
2
ḂḢ (14)

and from Eq. (14), we can compute Appell function of magnetic field
for any area

Am =
∫

V
amdV (15)

Figure 1. Scheme for LC electromagnetic oscillation.



186 Xu, Ma, and Huang

3. SIMPLE MODELS IN ELECTROMAGNETIC JERKY
DYNAMICS

3.1. LC Electromagnetism Oscillation

We consider a simple circuit with inductor (L), capacitors (C), a
battery (ε) and a switch (K) connected in a loop. See Figure 1. We
take the three variables, I = iL = iC , U = vC and q = qC . The
differential equations of LC electromagnetic oscillation is





L
dI

dt
= −U

C
dU

dt
= I

(16)

and CU = q, where the constants L and C denote the inductance and
the capacitance respectively.

The first-order differential equations (16) can be cast into the
second-order differential equation as follow

d2I

dt2
+ ω2I = 0 (17)

with ω2 = 1
LC . Eq. (17) is the jerk function of LC electromagnetic

oscillation. The general solution of the system of Eq. (17) is

I(t) = a cos(ωt + φ) (18)

and
U(t) = (a/Cω) sin(ωt + φ) (19)

where a and φ is constants controlled by initial conditions. We can
give the electric energy

We =
1
2
CU2 =

a2

2Cω2
sin2(ωt + φ) (20)

and the magnetic energy

Wm =
1
2
LI2 =

a2

2Cω2
cos2(ωt + φ) (21)

and the total electromagnetic energy is conserved

W = We + Wm =
a2

2Cω2
(22)
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Now we consider the problems in jerky dynamics, the jerk is

j =
...
q = Ï = −aω2 cos(ωt + φ) (23)

correspondingly the electric Appell function will be

Ae =
1
2
CU̇2 =

a2

2C
cos2(ωt + φ) (24)

and magnetic Appell function will be

Am =
1
2
Lİ2 =

a2

2C
sin2(ωt + φ) (25)

and the total electromagnetic Appell function is also conserved

A = Ae + Am =
a2

2C
(26)

In Figure 2, jerk, energy and Appell function changing with the
time have been plotted for certain parameters.

3.2. RLC Electromagnetism Oscillation

We consider a circuit with resistors (R), inductor (L), capacitors (C),
a battery (ε) and a switch (K). The simplest circuit has one element
of each connected in a loop. See Figure 3.
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Figure 2. (a) Jerk, (b) energy and (c) Appell function when L = 1 H,
C = 1 F, and ε = 1 V.
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Figure 3. Scheme for RLC electromagnetic oscillation.

We take the three variables, I = iR = iL = iC , U = vC and
q = qC . The differential equations of RLC electromagnetic oscillation
is 




L
dI

dt
= −RI − U

C
dU

dt
= I

(27)

and CU = q, where the constants R, L and C denote the resistance,
the inductance and the capacitance respectively. The first-order
differential equations (27) can be cast into the second-order differential
equation as follow

d2I

dt2
+ γ

dI

dt
+ ω2I = 0 (28)

with γ = R
L , ω2 = 1

LC . Eq. (28) is the jerk function of RLC
electromagnetic oscillation.

The general solutions of the system of Eq. (28) are as follows:
Case I: if γ2 = 4ω2, then

I(t) = a0e
−γt/2 + b0te

−γt/2 (29)

and
U(t) =

(2a0γ + 4b0 + 2b0γt)
Cγ2

e−γt/2 (30)

Case II: if γ2 > 4ω2, then

I(t) = a1e

(
−γ−

√
γ2−4ω2

)
t/2 + b1e

(
−γ+

√
γ2−4ω2

)
t/2 (31)

and

U(t) =
a1

2Cω2

(
−γ +

√
γ2 − 4ω2

)
e

(
−γ−

√
γ2−4ω2

)
t/2

+
b1

2Cω2

(
−γ −

√
γ2 − 4ω2

)
e

(
−γ+

√
γ2−4ω2

)
t/2 (32)
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Case III: if γ2 < 4ω2, then

I(t) = e−γt/2
[
a2 cos

(√
ω2 − γ2/4t

)
+ b2 sin

(√
ω2 − γ2/4t

)]
(33)

and

U(t) = e−γt/2
[(

a2γ + 2b2

√
ω2 − γ2/4

)
sin

(√
ω2 − γ2/4t

)

+
(
b2γ − 2a2

√
ω2 − γ2/4

)
cos

(√
ω2 − γ2/4t

)]
/

(
2Cω2

)
(34)

If the solutions of I and U are obtained, we can give the electric energy

We =
1
2
CU2 (35)

and the magnetic energy

Wm =
1
2
LI2 (36)

but the total electromagnetic energy is not conserved because the
resistor is a kind of dissipative element.
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Figure 4. case γ2 = 4ω2: (a) jerk, (b) energy and (c) Appell function
when R=2 Ω, L = 1 H, C = 1 F, and ε = 1 V.
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Figure 5. case γ2 > 4ω2: (a) jerk, (b) energy and (c) Appell function
when R = 3 Ω, L = 1H, C = 1F, and ε = 1V.
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When we consider the problems in jerky dynamics, the jerk is

j =
...
q = Ï (37)

Similarly, the electric Appell function will be

Ae =
1
2
CU̇2 (38)

and magnetic Appell function will be

Am =
1
2
Lİ2 (39)

but the total electromagnetic Appell function is also not conserved.
In Figures 4–6, jerk, energy and Appell function changing with the

time have been plotted for certain parameters in different situations.

4. THREE-ORDER LAGRANGE EQUATION RELATING
TO MAGNETIC APPELL FUNCTION

Since three-order Lagrange equation has been introduced by Mei F. X.,
people make certain relational research on the equation [6–9]. When
the jerk function on electric current has been applied in a transient
process of above-mentioned RL circuit, we can obtain a three-order
Lagrange equation relating to magnetic Appell function whose form is
as follows.

d

dt

∂Am

∂İ
− 1

2
∂Am

∂I
= ε̇i (40)

On the one hand, from the left side of Eq. (40), we see

d

dt

∂

∂İ

(
1
2
Lİ2

)
− 1

2
∂

∂I

(
1
2
Lİ2

)
=

d

dt

(
Lİ

)
= LÏ. (41)

On the other hand, only making time derivative to the Kirchhoff
expression of this transient process, i.e., ε − εi = IR, the right side
of Eq. (40) may have the following form

ε̇i = −Rİ = −ImR2

L
e−

R
L

t (42)

Substituting Eqs. (41) and (42) into Eq. (40), we obtain the same result
of Eq. (5).
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5. CONCLUSIONS AND REMARKS

What have we learned from the above discussion? First, the concept of
jerk has been generalized into jerky dynamics. The mode of thinking
enlightens us to extend some new concepts in electromagnetic jerky
dynamics. The motion aroused by the time rate of change of force,
induced emf, and displacement current can be summed up as the jerky
motion. Second, Appell function is the important state function and
general measurement of jerky motion. The birth of jerky dynamics
symbolizes that Appell function is the important physics quantity.
Just like energy is the important physics quantity in physics. Any
physics quantity with the dimension of L2MT (−4) can be called Appell
function here. Third, we give some simple models in electromagnetic
jerky dynamics and discuss the features of Appell function.

Appell function is a special quantity. We can find the discussion
about Appell function in some Ref. [10, 14–16]. Besides Linz [11] gave
a conserved quantity K = 1

2(ẍ+Aẋ)2 + 1
2B(ẋ+Ax)2 whose dimension

is that of Appell function in special Newtonian jerky dynamics. In
this paper, we only discuss the transformation and conservation of
electromagnetic Appell function. We also find that there are some
other Appell functions. For example, simple harmonic vibration of
spring has potential Appell function Ap = 1

2kẋ2 (where k is the
stiffness constant, and ẋ is the velocity) whose dimension is exactly
that of kinetic Appell function Ak = 1

2mv̇2. Obviously the mechanical
Appell function A = Ak + Ap is conserved. Then are there the
transformation and conservation of extensive Appell function? Even
after the hyperjerk system [12, 13] is introduced. Can the concept
of hyperAppell function 1

2m(dnx
dtn )2 be introduced? These perhaps are

some important problems to be studied.
In the vocabulary of physics, the term of Appell function is not

well known. But Appell function is neither moribund nor speculative.
The word was used in science for a long time. Now the concept has
been linked to some of the topics in jerky dynamics. It would be a pity
if Appell function is ignored since its name is not well known.

Comparing the electromagnetic jerky dynamics in this paper
with S (Sprott) L (Linz) G (Gottlieb) jerky dynamics, we can
find the difference. SLG jerky dynamics has transcend traditional
physics. It generalized the classical mechanical concept (jerk) into
the mathematical jerk function or jerk equation and discussed the
regular [17, 18], chaotic [3, 4] solutions and the relative rules [11, 19].
Some summarizations and remarks have been given in Ref. [20, 21].
However, in this paper, the jerk function is the third order time
differential of charge (

...
q (t)). This is the analogy and extension of
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the jerk in traditional electromagnetism. This paper is devoted to
generalizing and extending the concepts and rules of physics, such as
from time rate of change of force (Ḟ ) to time rate of change of induced
emf (ε̇i) and time rate of change of displacement current (İd), from
mechanical Appell function to electric and magnetic Appell function.
In addition, the paper did not involve the nonlinear character.
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