Vol. 13
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-03-11
Synthesis of Triple-Band and Quad-Band Bandpass Filters Using Lumped-Element Coplanar Waveguide Resonators
By
Progress In Electromagnetics Research B, Vol. 13, 433-451, 2009
Abstract
This paper develops a novel design method for synthesizing the multi-passband filter with high flexibility in various passband location and fractional bandwidth. Using the proposed compensation technology in the equivalent circuit of multi-passband resonator, the cutoff frequencies and matching property in passband regions can be improved. Triple- and quad-band bandpass filters operating in both wireless local area network (WLAN) 802.11 a/b/g and worldwide interoperability for microwave access (WiMAX) systems are presented to verify the design method. The lumped-element coplanar waveguide stub fabricated by the split-ring resonator is established to realize filter with compact size. All the measured, full-wave simulated and equivalent-circuit modeled results illustrate a good agreement among them, which validates the multi-passband design methodology and shows the advantages of DC elimination and deep rejection between each passband.
Citation
Min-Sou Wu, Yu-Zhi Chueh, Jen-Chun Yeh, and Shau-Gang Mao, "Synthesis of Triple-Band and Quad-Band Bandpass Filters Using Lumped-Element Coplanar Waveguide Resonators," Progress In Electromagnetics Research B, Vol. 13, 433-451, 2009.
doi:10.2528/PIERB09021302
References

1. Chen, X.-P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasielliptic responses," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2569-2578, December 2007.
doi:10.1109/TMTT.2007.909603

2. Cheng, K. K. M. and C. Law, "A new approach to the realization of a dual-band microstrip filter with very wide upper stopband," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 6, 1461-1467, June 2008.
doi:10.1109/TMTT.2008.923873

3. Gao, X., L. K. Yeung, and K. L. Wu, "A dual-band balun using partially coupled stepped-impedance coupled-line resonators," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 6, 1455-1460, June 2008.
doi:10.1109/TMTT.2008.923338

4. Lee, J., M. S. Uhm, and I. B. Yom, "A dual-passband filter of canonical structure for satellite applications," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 271-273, June 2004.
doi:10.1109/LMWC.2004.828026

5. Amari, S. and M. Bekheit, "A new class of dual-mode dual-band waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 8, 1938-1944, August 2008.
doi:10.1109/TMTT.2008.927411

6. Lee, Y. C., "CPW-to-stripline vertical via transitions for 60 GHz Ltcc sop applications," Progress In Electromagnetics Research Letters, Vol. 2, 37-44, 2008.
doi:10.2528/PIERL07122805

7. Zoschke, K., J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Scherpinski, H. Reichl, and F. J. Schmuckle, "Thin film integration of passive --- Single components, filters, integrated passive devices," IEEE Proceedings of 54th Electronic Components and Technology Conference, 294-301, Las Vegas, NV, June 2004.

8. Liu, L., S. M. Kuo, J. Abrokwah, M. Ray, D. Maurer, and M. Miller, "Compact harmonic filter design and fabrication using IPD technology," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 12, 556-562, December 2007.

9. Wang, X. H. and B. Z. Wang, "Compact broadband dual-band bandpass filters using slotted ground structures," Progress In Electromagnetics Research, 151-166, PIER 82, 2008.

10. Fan, J. W., C. H. Liang, and X. W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, PIER 75, 285-293, 2007.

11. Lee, J. and K. Sarabandi, "Design of triple-passband microwave filters using frequency transformations," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 187-193, January 2008.
doi:10.1109/TMTT.2007.912206

12. Chen, C. F., T. Y. Huang, and R. B. Wu, "Design of dual- and triple-passband filters using alternately cascaded multiband resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3550-3558, September 2006.
doi:10.1109/TMTT.2006.880653

13. Kuo, J. T., T. H. Yeh, and C. C. Yeh, "Design of microstrip bandpass filters with a dual-passband response," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1331-1337, April 2005.

14. Zhang, Y., K. A. Zaki, J. A. Ruiz-Cruz, and A. E. Atia, "Analytical synthesis of generalized multi-band microwave filters," IEEE MTT-S Int. Microwave Symp. Dig., 1273-1276, June 2007.

15. Lunot, V., S. Bila, and F. Seyfert, "Optimal synthesis for multiband microwave filters," IEEE MTT-S Int. Microwave Symp. Dig., 115-118, June 2007.

16. Quendo, C., A. Manchec, Y. Clavet, E. Rius, J. F. Favennec, and C. Person, "General synthesis of n-band resonator based on norder dual behavior resonator," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 5, 337-339, May 2007.
doi:10.1109/LMWC.2007.895697

17. Mao, S. G. and M. S. Wu, "Design of artificial lumped-element coplanar waveguide filters with controllable dual-passband responses," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1684-1692, July 2008.
doi:10.1109/TMTT.2008.925573

18. Mao, S. G., M. S. Wu, and Y. Z. Chueh, "Design of composite right/left-handed coplanar-waveguide bandpass and dual-passband filters," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3543-3549, September 2006.
doi:10.1109/TMTT.2006.880652

19. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filter, Impedance-matching Networks, and Coupling Structures, 595-605, Artech House, 1980.

20. Williams, A. B. and F. J. Taylor, Electronic Filter Design Handbook, 3rd edition, 2.36-2.43, 1995.

21. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1461, April 2005.
doi:10.1109/TMTT.2005.845211

22. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.

23. Mao, S. G. and Y. Z. Chueh, "Compact dual-passband filter using lumped-element coplanar waveguide resonators," Electron. Lett., Vol. 43, No. 16, 873-875, August 2, 2007.
doi:10.1049/el:20070656