Vol. 14
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-04-22
Boundary Effects in the Electromagnetic Response of a Metamaterial in the Case of Normal Incidence
By
Progress In Electromagnetics Research B, Vol. 14, 341-381, 2009
Abstract
In this paper we investigate boundary effects and other consequences of spatial dispersion by analyzing in detail the response of a metamaterial half-space to a monochromatic plane wave normally incident from free-space. The metamaterial is composed of an orthorhombic lattice of identical particles, each of which exhibits both an electric and magnetic response. Rather than relying on the conventional boundary conditions and the Clausius-Mossotti equations, we use instead the point-dipole interaction model and an expansion of polarization in eigenmodes to determine the structure's dispersion relation and electromagnetic response. Using the nearestneighbor approximation, we show how truncating the crystal lattice excites an "ordinary" mode and two "extraordinary" modes that are necessary to satisfy the boundary conditions at the interface. For most cases, the extraordinary modes are evanescent, and thus form a thin transition layer at the surface. However, under certain conditions, typically near particle resonances, either one or both of these modes can be propagating.
Citation
Aaron D. Scher, and Edward F. Kuester, "Boundary Effects in the Electromagnetic Response of a Metamaterial in the Case of Normal Incidence," Progress In Electromagnetics Research B, Vol. 14, 341-381, 2009.
doi:10.2528/PIERB09021107
References

1. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617(1)-036617(11), Mar. 2005.

2. Mahan, G. D. and G. Obermair, "Polaritons at surfaces," Physical Review, Vol. 183, 834-841, 1969.
doi:10.1103/PhysRev.183.834

3. Philpott, M. R., "Reflection of light by a semi-infinite dielectric," Journal of Chemical Physics, Vol. 60, 1410-1419, 1974.
doi:10.1063/1.1681213

4. Philpott, M. R., "Polaritons in a spatially dispersive dielectric half space," Physical Review B, Vol. 14, 3471-3487, 1976.
doi:10.1103/PhysRevB.14.3471

5. Philpott, M. R., "Effect of spatial dispersion on the S-polarized optical properties of a slab dielectric," Journal of Chemical Physics, Vol. 60, 2520-2529, 1974.
doi:10.1063/1.1681392

6. Mead, C. A., "Exactly soluble model for crystal with spatialdispersion," Physical Review B, Vol. 15, 519-532, 1977.
doi:10.1103/PhysRevB.15.519

7. Mead, C. A., "Formally closed solution for a crystal with spatialdispersion," Physical Review B, Vol. 17, 4644-4651, 1978.
doi:10.1103/PhysRevB.17.4644

8. Belov, P. A. and C. R. Simovski, "Boundary conditions for interfaces of electromagnetic crystals and the generalized Ewald-Oseen extinction principle," Physical Review B, Vol. 73, 045102(1)-045102(14), Jan. 2006.

9. Pekar, S. I., Crystal Optics and Additional Light Waves, Benjamin/Cummings Pub. Co., 1983.

10. Tretyakov, S. A. and A. J. Viitanen, "Plane waves in regular arrays of dipole scatterers and effective-medium modeling," Journal of the Optical Society of America A-Optics Image Science and Vision , Vol. 17, 1791-1797, Oct. 2000.
doi:10.1364/JOSAA.17.001791

11. Yatsenko, V. and S. I. Maslovski, "Electromagnetic interaction of parallel arrays of dipole scatterers," Progress In Electromagnetics, Vol. 25, 285-307, 2000.
doi:10.2528/PIER99060401

12. Belov, P. A. and C. R. Simovski, "Oblique propagation of electromagnetic waves in regular 3D lattices of scatterers (dipole approximation)," Proc. SPIE, Vol. 4073, 266-276, 2000.
doi:10.1117/12.396407

13. Belov, P. A. and C. R. Simovski, "Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers," Physical Review E, Vol. 72, 026615(1)-026615(15), Aug. 2005.

14. Collin, R. E., "Field Theory of Guided Waves," IEEE Press , 2nd edition, New York, 1991.

15. Simovski, C. R. and S. L. He, "Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Omega particles ," Physics Letters A, Vol. 311, 254-263, May 12, 2003 .
doi:10.1016/S0375-9601(03)00494-8

16. Simovski, C. R. and S. A. Tretyakov, "Local constitutive parameters of metamaterials from an effective-medium perspective," Physical Review B, Vol. 75, 195111(1)-195111(10), May 2007.
doi:10.1103/PhysRevB.75.195111

17. Simovski, C. R., "Analytical modelling of double-negative composites," Metamaterials, Vol. 2, 169-185, 2008.
doi:10.1016/j.metmat.2008.09.003

18. Simovski, C. R., "Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices," Metamaterials, Vol. 1, 62-80, 2007.
doi:10.1016/j.metmat.2007.09.002

19. Berman, D. H., "An extinction theorem for electromagnetic waves in a point dipole model," American Journal of Physics, Vol. 71, 917-924, Sep. 2003.
doi:10.1119/1.1539100

20. Wang, J. F., S. B. Qu, H. Ma, Y. M. Yang, and X. Wu, "Wideangle polarization independent planar left-handed metamaterials based on dielectric resonators," Progress in Electromagnetics Research B, Vol. 12, 243-248, 2009.
doi:10.2528/PIERB08121609

21. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1972.

22. Scher, A. D., Boundary effects in the electromagnetic response of a metamaterial using the point-dipole interaction model, Ph.D. Dissertation, University of Colorado at Boulder, 2008.

23. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, No. 1, 44-45, 2009.
doi:10.1016/j.metmat.2009.02.001

24. Sipe, J. E. and J. V. Kranendonk, "Macroscopic electromagnetic theory of resonant dielectrics," Physical Review A, Vol. 9, 1806-1822, 1974.
doi:10.1103/PhysRevA.9.1806

25. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

26. Kempa, K., R. Ruppin, and J. B. Pendry, "Electromagnetic response of a point-dipole crystal," Physical Review B, Vol. 72, 205103(1)-205103(6), Nov. 2005.

27. Brillouin, L., Wave Propagation in Periodic Structures; Electric Filters and Crystal Lattices, 2nd Ed., Dover Publications, 1953.

28. Kar, N. and A. Bagchi, "Local-field effect near the surface of dipolar lattices," Solid State Communications, Vol. 33, 645-648, 1980.
doi:10.1016/0038-1098(80)90743-7

29. Mochan, W. L. and R. G. Barrera, "Surface local field-effect," Journal de Physique Colloque C5, Vol. 45, 207-212, 1984.
doi:10.1016/0921-4526(90)90354-W

30. Poppe, G. P. M. and C. M. J. Wijers, "Exact solution of the optical-response of thick slabs in the discrete dipole approach," Physica B, Vol. 167, 221-237, Dec. 1990.
doi:10.1016/0921-4526(90)90354-W

31. Gadomskii, O. N. and S. V. Sukhov, "Microscopic theory of a transition layer on the ideal surface of semiinfinite dielectric media and the near-field effect," Optics and Spectroscopy, Vol. 89, 261-267, Aug. 200.

32. Drude, P., The Theory of Optics, Longmans, Green, and Co., 1902.
doi:10.1103/PhysRevLett.55.1192

33. Mochan, W. L. and R. G. Barrera, "Intrinsic surface-induced optical anisotropies of cubic crystals: Local field effect," Physical Review Letters, Vol. 55, 1192-1195, 1185.
doi:10.1049/el:19880449

34. Idemen, M., "Straightforward derivation of boundary-conditions on sheet simulating an anisotropic thin-layer," Electronics Letters, Vol. 24, 663-665, May 26, 1988.
doi:10.1049/el:19880449

35. Idemen, M., "Universal boundary relations of the electromagneticfield," Journal of the Physical Society of Japan, Vol. 59, 71-80, Jan. 199.
doi:10.1143/JPSJ.59.71

36. Nicolson, A. M. and G. F. Ross, "Measurement of intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

37. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104(1)-195104(5), May 15, 2002.

38. Clercx, H. J. H. and G. Bossis, "Electrostatic interactions in slabs of polarizable particles," Journal of Chemical Physics, Vol. 98, 8284-8293, 2004.

39. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E, Vol. 68, 065602(1)-065602(4), Dec. 2003.

40. Chen, X. D., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 016608(1)-016608(7), 2004.