Vol. 13
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-03-11
Mechanical Properties of a Ferrofluid Seal: Three-Dimensional Analytical Study Based on the Coulombian Model
By
Progress In Electromagnetics Research B, Vol. 13, 385-407, 2009
Abstract
This paper presents a general method for studying the mechanical properties of a ferrofluid seal by using a three-dimensional analytical approach based on the coulombian model of a magnet. The fundamental Maxwell's equations lead us to define the concept of magnetic energy of the ferrofluid seal by using only the threedimensional equations of the magnetic field created by ring permanent magnets radially magnetized. Our study corresponds to the specific case when the ferrofluid is submitted to a very high magnetic field. Under these conditions, we assume that the mechanical properties of the ferrofluid depend only on the magnetic field created by the permanent magnets. Throughout this paper, the remanence polarization J of the magnets used is higher than 1T. The magnetic field we use in order to align the magnetic particles is very intense, greater than 400 kA/m. Consequently, the magnetic particles are assumed to be saturated and the magnetic field they create can be omitted. In this paper, a cylindrical structure consisting of two outer ring permanent magnets radially magnetized and an inner nonmagnetic cylinder is considered. In addition, a ferrofluid seal is placed between them. The calculation of the magnetic pressure of the ferrofluid seal has been analytically established in three dimensions in order to determine its shape. Moreover, the geometrical evolution of the ferrofluid seal shape is presented when the inner non-magnetic cylinder crushes the ferrofluid seal. The radial stiffness of the ferrofluid seal is determined in three dimensions when the inner cylinder is decentered. Furthermore, a way of obtaining the ferrofluid seal static capacity is discussed.
Citation
Romain Ravaud, and Guy Lemarquand, "Mechanical Properties of a Ferrofluid Seal: Three-Dimensional Analytical Study Based on the Coulombian Model," Progress In Electromagnetics Research B, Vol. 13, 385-407, 2009.
doi:10.2528/PIERB09020601
References

1. Rosensweig, R. E., Y. Hirota, S. Tsuda, and K. Raj, "Study of audio speakers containing ferrofluid," J. Phys.: Condens. Matter, Vol. 20, 2008.
doi:10.1088/0953-8984/20/20/204147

2. Rosensweig, R. E., "Ferrohydrodynamics," Dover, 1997.

3. Raj, K., V. Moskowitz, and R. Casciari, "Advances in ferrofluid in ferrofluid technology," Journal of Magnetism and Magnetic Materials, Vol. 149, 174-180, 1995.
doi:10.1016/0304-8853(95)00365-7

4. Babic, S. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

5. Babic, S. and C. Akyel, "An improvement in the calculation of the magnetic field for an arbitrary geometry coil with rectangular cross section," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, 493-504, November 2005.
doi:10.1002/jnm.594

6. Babic, S., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3D linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn, Vol. 36, No. 5, 3125-3127, 2000.
doi:10.1109/20.908707

7. Babic, S., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
doi:10.1109/20.996131

8. Babic, S., C. Akyel, and S. Salon, "New procedures for calculating the mutual inductance of the system: Filamentary circular coilmassive circular solenoid," IEEE Trans. Magn., Vol. 39, No. 3, 1131-1134, 2003.
doi:10.1109/TMAG.2003.810550

9. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

10. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102

11. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, PIER 88, 307-319, 2008.

12. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
doi:10.1109/TMAG.2004.831653

13. Choi, H. S., Y. S. Kim, K. T. Kim, and I. H. Park, "Simulation of hydrostatical equilibrium of ferrofluid subject to magneto-static field," IEEE Trans. Magn., Vol. 44, No. 6, 818-821, 2008.
doi:10.1109/TMAG.2007.915962

14. Shah, R. C. and M. Bhat, "Ferrofluid squeeze film in a long bearing," Tribology International, Vol. 37, 441-446, 2004.
doi:10.1016/j.triboint.2003.10.007

15. Bajkowski, J., J. Nachman, M. Shillor, and M. Sofonea, "A model for a magnetorheological damper," Mathematical and computer modelling, Vol. 48, 56-68, 2008.
doi:10.1016/j.mcm.2007.08.014

16. Park, G. S. and K. Seo, "New design of the magnetic fluid linear pump to reduce the discontinuities of the pumping forces," IEEE Trans. Magn., Vol. 40, 916-919, 2004.
doi:10.1109/TMAG.2004.824718

17. Lemarquand, G., "Ironless loudspeakers," IEEE Trans. Magn., Vol. 43, No. 8, 3371-3374, 2007.
doi:10.1109/TMAG.2007.897739

18. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Ironless loudspeakers with ferrofluid seals," Archives of Acoustics, Vol. 33, No. 4, 3-10, 2008.

19. Berkouk, M., V. Lemarquand, and G. Lemarquand, "Analytical calculation of ironless loudspeaker motors," IEEE Trans. Magn., Vol. 37, No. 2, 1011-1014, 2001.
doi:10.1109/20.917185

20. Tarapov, I., "Movement of a magnetizable fluid in lubricating layer of a cylindrical bearing," Magnetohydrodynamics, Vol. 8, No. 4, 444-448, 1972.

21. Walker, J. and J. Backmaster, "Ferrohydrodynamics thrust bearings," Int. J. Eng. Sci., Vol. 17, 1171-1182, 1979.
doi:10.1016/0020-7225(79)90100-9

22. Tiperi, N., "Overall characteristics of bearings lubricated ferrofluids," ASME J. Lubr. Technol., Vol. 105, 466-475, 1983.

23. Raikher, Y. L., V. I. Stepanov, J. C. Bacri, and R. Perzynski, "Orientational dynamics in magnetic fluids under strong coupling of external and internal relaxations," Journal of Magnetism and Magnetic Materials, Vol. 289, 222-225, 2005.
doi:10.1016/j.jmmm.2004.11.064

24. Miyake, S. and S. Takahashi, "Sliding bearing lubricated with ferromagnetic fluid," ASLE Trans., Vol. 28, 461-466, 1985.

25. Chang, H., C. Chi, and P. Zhao, "A theoretical and experimental study of ferrofluid lubricated four-pocket journal bearing," Journal of Magnetism and Magnetic Materials, Vol. 65, 372-374, 1987.
doi:10.1016/0304-8853(87)90074-6

26. Zhang, Y., "Static characteristics of magnetized journal bearing lubricated with ferrofluids," ASME J. Tribol., Vol. 113, 533-538, 1991.
doi:10.1115/1.2920656

27. Osman, T., G. Nada, and Z. Safar, "Static and dynamic characteristics of magnetized journal bearings lubricated with ferrofluid," Tribology International, Vol. 34, 369-380, 2001.
doi:10.1016/S0301-679X(01)00017-2

28. Shah, R. C. and M. Bhat, "Anisotropic permeable porous facing abd slip velocity squeeze film in axially undefined journal bearing with ferrofluid lubricant," Journal of Magnetism and Magnetic Materials, Vol. 279, 224-230, 2004.
doi:10.1016/j.jmmm.2004.01.082

29. Cunha, F. and H. Couto, "A new boundary integral formulation to describe three-dimensional motions of interfaces between magnetic fluids," Applied Mathematics and Computation, Vol. 199, 70-83, 2008.
doi:10.1016/j.amc.2007.09.035

30. Chen, S., Q. Zhang, H. Chong, T. Komatsu, and C. Kang, "Some design and prototyping issues on a 20 krpm hdd spindle motor with a ferro-fluid bearing system," IEEE Trans. Magn., Vol. 37, No. 2, 805-809, 2001.
doi:10.1109/20.917620

31. Zhang, Q., S. Chen, S. Winoto, and E. Ong, "Design of high-speed magnetic fluid bearing spindle motor," IEEE Trans. Magn., Vol. 37, No. 4, 2647-2650, 2001.
doi:10.1109/20.951262

32. Miwa, M., H. Harita, T. Nishigami, R. Kaneko, and H. Unozawa, "Frequency characteristics of stiffness and damping effect of a ferrofluid bearing," Tribology Letter, Vol. 15, No. 2, 97-105, 2003.
doi:10.1023/A:1024448930757

33. Ochonski, W., "The attraction of ferrofluid bearings," Mach. Des., Vol. 77, No. 21, 96-102, 2005.

34. Meng, Z. and Z. Jibin, "An analysis on the magnetic fluid seal capacity," Journal of Magnetism and Magnetic Materials, Vol. 303, e428-e431, 2006.
doi:10.1016/j.jmmm.2006.01.060

35. Matthies, G. and U. Tobiska, "Numerical simulation of normal-field instability in the static and dynamic case," Journal of Magnetism and Magnetic Materials, Vol. 289, 436-439, 2005.

36. Ivanov, A., S. Kantorovich, V. Mendelev, and E. Pyanzina, "Ferrofluid aggregation in chains under the influence of a magnetic field," Journal of Magnetism and Magnetic Materials, Vol. 300, e206-e209, 2006.
doi:10.1016/j.jmmm.2005.10.081

37. Kuzhir, P., "Free boundary of lubricant film in ferrofluid journal bearings," Tribology International, Vol. 41, 256-268, 2008.
doi:10.1016/j.triboint.2007.07.006