Vol. 6
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-03-10
Computation of Physical Optics Integral by Levin's Integration Algorithm
By
Progress In Electromagnetics Research M, Vol. 6, 59-74, 2009
Abstract
In this paper, a novel algorithm for computing Physical Optics (PO) integrals is introduced. In this method, the integration problem is converted to an inverse problem by Levin's integration algorithm. Furthermore, the singularities, that are possible to occur in the applications of Levin's method, are handled by employing trapezoidal rule together with Levin's method. Finally, the computational accuracy of this new method is checked for some radar cross section (RCS) estimation problems performed on flat, singly-curved and doubly-curved PEC plates which are modeled by 8-noded isoparametric quadrilaterals. The results are compared with those obtained by analytical and brute force integration.
Citation
Ahmet Cemal Durgun, and Mustafa Kuzuoğlu, "Computation of Physical Optics Integral by Levin's Integration Algorithm," Progress In Electromagnetics Research M, Vol. 6, 59-74, 2009.
doi:10.2528/PIERM09020204
References

1. Ludwig, A. C., "Computation of radiation patterns involving double integration," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 6, 767-769, November 1968.
doi:10.1109/TAP.1968.1139296

2. Dos Santos, M. L. X. and N. R. Rabelo, "On the Ludwig integration algorithm for triangular subregions," Proceedings of the IEEE, Vol. 74, No. 10, 1455-1456, October 1986.
doi:10.1109/PROC.1986.13646

3. Moreira, F. J. S. and A. Prata, "A self-checking predictor-corrector algorithm for efficient evaluation of reflector antenna radiation integrals," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 246-254, January 1994.
doi:10.1109/8.277219

4. Kobayashi, H., K. Hongo, and I. Tanaka, "Expressions of physical optics integral for smooth conducting scatterers approximated by quadratic surfaces ," Electronics and Communication in Japan, Vol. 83, No. 7, 863-871, Part 1, 2000.

5. Flinn, E. A., "A modification of Filon's method of numerical integration," Journal of the ACM, Vol. 7, No. 2, 181-184, April 1960.
doi:10.1145/321021.321029

6. Crabtree, G. D., "A numerical quadrature technique for physical optics scattering analysis," IEEE Transactions on Magnetics, Vol. 27, No. 5, 4291-4294, September 1991.
doi:10.1109/20.105050

7. Vico, F., M. Ferrando, M. Baquero, and E. Antonino, "A new 3D fast physical optics method," IEEE Antennas and Propagation Society International Symposium 2006, 1849-1852, July 9-14, 2006.

8. Corona, P., G. Manara, G. Pelosi, and G. Toso, "PO analysis of the scattering from polygonal flat-plate structures with dielectric inclusions," Journal of Electromagnetic Waves and Applications, Vol. 14, 693-711, 2000.
doi:10.1163/156939300X01427

9. Arslanagic, S., P. Meincke, E. Jorgensen, and O. Breinbjerg, "An exact line integral representation of the physical optics far field from plane PEC scatterers illuminated by Hertzian dipoles," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 1, 51-69, 2003.
doi:10.1163/156939303766975344

10. Levin, D., "Procedures for computing one and two dimensional integrals of fumctions with rapid irregular oscillations," Mathematics of Computation, 531-538, April 1982.

11. Kuzuoglu, M., "Solution of electromagnetic boundary value problems by the plane wave enriched FEM approach," IEEE APS-URSI International Symposium, 2003.

12. Taylor, C. and T. G. Hughes, Finite Element Programming of the Navier-Stokes Equations, Pineridge Press, 1981.