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Abstract—In this paper, a novel algorithm for computing Physical
Optics (PO) integrals is introduced. In this method, the integration
problem is converted to an inverse problem by Levin’s integration
algorithm. Furthermore, the singularities, that are possible to
occur in the applications of Levin’s method, are handled by
employing trapezoidal rule together with Levin’s method. Finally, the
computational accuracy of this new method is checked for some radar
cross section (RCS) estimation problems performed on flat, singly-
curved and doubly-curved PEC plates which are modeled by 8-noded
isoparametric quadrilaterals. The results are compared with those
obtained by analytical and brute force integration.

1. INTRODUCTION

Since the start of widespread application of radars, many numerical
techniques have been developed for electromagnetic scattering
problems. Even though there are more advanced methods in the
literature, Physical Optics (PO) is still a powerful tool for radar
cross-section (RCS) estimation problems because of its straightforward
implementation and accuracy at high frequencies. Starting from the
Stratton-Chu equations, one may obtain the expression for the PO
scattered magnetic field in frequency domain, in terms of the wave
number (k), the polarization vector of the incident magnetic field (H̄0),
the normal vector of the scatterer surface (n̂′), the position vector of
the scatterer surface (r̄′) and the distance of the observer to the origin
of the reference frame (R0), as given in (1). In this equation, the
integration is done over the illuminated surface of the scatterer (S) and
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the unit vectors in the scattering and incidence directions are denoted
by k̂s and k̂i, respectively.

H̄s =
−jke−jkR0

4πR0

∫
S

(
2n̂′ × H̄0

)× k̂se
jk(k̂s−k̂i)·r̄′dS′ (1)

Due to the complex exponential term, the integrand of the PO integral
given in (1) is a very oscillatory function, especially at high frequencies.
Therefore, it is very expensive to compute these kinds of integrals by
simple numerical integration techniques. Some special techniques are
needed in order to compute these integrals accurately and effectively.
In fact, there are many techniques on this subject in the literature.

One of these methods is suggested by Ludwig, in which the
integration domain is divided into small planar sub domains and on
each of them the amplitude and phase components of the integrand are
approximated by first degree polynomials [1–3]. The most significant
disadvantage of this method is that, since planar sub-domains are used
to model the integration domain, too many facets are needed for the
accuracy of the computation, particularly around the regions where the
curvature is high when compared with the wavelength. Consequently,
this situation leads to a very long integration time. To overcome this
deficiency of the linear phase approximation, more advanced methods
have been introduced which employ curved patches approximated by
second degree polynomials for target modeling [4].

Apart from the aforementioned techniques, another frequently
used approach to compute the integrals of functions with rapid
oscillations is Filon’s method as given in [5]. However, Filon’s method
is only applicable to the integrals in which the phase variation of the
integrand is linear. In cases of nonlinear phase variations, a modified
version of this method may be employed [6].

Another application of Filon’s method available in the literature
is used in monostatic RCS computation by PO approximation. In this
method, Fubini’s and Stokes theorems are employed to convert the
surface integrals into a summation of oscillatory line integrals which
are computed by Filon’s method [7]. In addition to this approach,
some other methods have been employed to reduce the surface integral
to a line integral [8, 9].

An additional improved version of the Filon’s method is suggested
by Levin. Although Filon’s method can be applied to any kind
of integrals, the most accurate results are obtained for constant
frequency (i.e., linear phase variation) cases [10]. On the other
hand the performance of Levin’s method for variable frequencies is
better. Indeed, in this paper, an integration scheme based on Levin’s
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integration technique is discussed. The organization of the paper
is as follows: In the second part, the theory of Levin’s method is
explained. The third part is dedicated to the application of Levin’s
method to PO integrals together with the techniques handling the
possible singularities that may occur during the computation. In the
fourth part, some numerical results, including the RCS computations
of flat, singly curved and doubly curved plates, are given and compared
with analytical and brute force integration results. Finally, in the last
part some concluding remarks are done together with a discussion of
advantages and disadvantages of this method.

2. LEVIN’S INTEGRATION METHOD

2.1. One Dimensional Case

One dimensional oscillatory integrals may be expressed in the following
form:

I =

b∫
a

f(x)ejq(x)dx (2)

In this integral, if f is a smooth and nonoscillatory function and if the
condition |q′(x)| � (b − a)−1 is satisfied, then this integral can easily
be computed using only a small number of values of f and q′ in [a, b].

In his paper, Levin proposed that if f is of the form

f(x) = jq′(x)p(x) + p′(x) ≡ L(1)p(x) (3)

then the integral can be evaluated as

I =

b∫
a

d

dx

(
p(x)ejq(x)

)
dx =p(b)ejq(b) − p(a)ejq(a) (4)

where the general solution for p is given as

p(x) = e−jq(x)

⎛
⎝ x∫

a

f(t)ejq(t)dt + c

⎞
⎠ (5)

The general solution for p(x) is also as oscillatory as the integral in
the Equation (5). However, if f and q′ are slowly varying, then there
exists a slowly varying particular solution p0 of (3). Then the result of
the integral in (2) can be expressed as

I = p0(b)ejq(b) − p0(a)ejq(a) (6)
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2.2. Two Dimensional Case

The two dimensional approach of Levin’s method is very similar to
one dimensional problem. In this case, a two dimensional oscillatory
integral is to be solved which is in the form:

I =

b∫
a

d∫
c

f(ξ, η)ejq(ξ,η)dξdη (7)

In order to apply the Levin’s method to this kind of integrals, f
should be smooth and nonoscillatory as in the one dimensional case.
However, the conditions that should be satisfied by q are expanded to
two dimensional space. ∣∣∣∣∂q

∂ξ

∣∣∣∣ = |qξ| � (b − a)−1

∣∣∣∣∂q

∂η

∣∣∣∣ = |qη| � (d − c)−1

(8)

In addition to this, a new operator should be defined instead of the
operator given in Equation (3). The new operator is:

L(2)(p) = pξη + jqξpη + jqηpξ + (jqξη − qξqη)p = f (9)

Then, by using the Equation (10)

∂2

∂ξ∂η
(pejq) = (pξη + jqξpη + jqηpξ + (jqξη − qξqη) p)ejq (10)

one can show that the solution of the integral in (7) is equal to

⇒ I = p(b, d)ejq(b,d)−p(a, d)ejq(a,d)−p(b, c)ejq(b,c)+p(a, c)ejq(a,c) (11)

After this point, an n-point collocation approximation can be made to
the function p(x) in terms of some linearly independent basis functions
uk,

pn(x) =
n∑

k=1

akuk(x) (12)

where the coefficients ak are determined by the n collocation
conditions. Now, the problem reduces to finding the coefficients ak.
If we substitute Equation (7) into Equation (3), we get

pn =
n∑

k=1

akuk ⇒ L(2)

(
n∑

k=1

akuk

)
(ξj, ηj) = f(ξj, ηj)

� {uk(ξ, η)}n
k=1 =

{
ξiηj

∣∣ 0 ≤ i, j ≤ √
n − 1

} (13)



Progress In Electromagnetics Research M, Vol. 6, 2009 63

Equation (13) can easily be converted to the form of Ax = b, where
A, b and x are defined as follows:⎡
⎢⎣

L(2)u1(x̄1) L(2)u2(x̄1) . . . . . . L(2)un(x̄1)
...

...
...

...
...

L(2)u1(x̄n) L(2)u2(x̄n) . . . . . . L(2)un(x̄n)

⎤
⎥⎦
⎡
⎣ a1

...
an

⎤
⎦=

⎡
⎣ f(x̄1)

...
f(x̄n)

⎤
⎦

(14)
where each x̄i is a collocation point. In this study, only 9 collocation
points are used which are selected to be the 4 corner points
(a, c), (a, d), (b, c), (b, d), 4 mid points (a, c+d

2 ), (b, c+d
2 ), (a+b

2 , c), (a+b
2 , d)

and 1 central point (a+b
2 , c+d

2 ).
Therefore, it is enough to solve this system of linear equations

to find the result of the integral given in Equation (7). Note
that in Equation (13), two dimensional monomials are used as basis
functions. The selection of basis functions and their number may
affect the computational cost significantly. Throughout this study, the
monomials up to 2nd order are used as basis functions, for both one
and two dimensional cases, and it is observed that, this selection gives
very accurate results with sufficiently low computational cost. In view
of the fact that it is out of the scope of this paper, the effects of using
other kinds of basis functions to the results may also be investigated
as a future work.

3. COMPUTATION OF THE PO INTEGRAL

The procedure explained in the previous section is only applicable to
integrals defined on rectangular domains in two dimensional spaces.
However, in radar cross section problems, the integration domain is
generally an arbitrary three dimensional surface and the integrals are
in the form of Equation (15). Therefore, a special treatment is needed
to use Levin’s method to RCS problems.

I =
∫

ϕ
f(x, y, z)ejq(x,y,z)dϕ (15)

Let ϕ = (x, y, z) be an arbitrary surface in �3. It is possible to map
any surface ϕ to a rectangular domain [−1, 1] × [−1, 1] in (ξ, η) local
coordinates [11].

If x, y and z components of an 8-noded isoparametric surface are
expressed in terms of some shape functions with variables (ξ, η), then
such a mapping is possible. Using the collocation points (xi, yi, zi), x,
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y and z components can be written as:

x(ξ, η) =
8∑

i=1

xiNi(ξ, η)

y(ξ, η) =
8∑

i=1

yiNi(ξ, η)

z(ξ, η) =
8∑

i=1

ziNi(ξ, η)

(16)

where the shape functions Ni are defined in Equations (17) and
(18) [12].

Corner points:

Ni =
1
4
(1 + ξiξ)(1 + ηiη)(ξiξ + ηiη − 1) (17)

Mid points:

Ni =
1
2
(
1 − ξ2

)
(1 + ηiη) if ξi = 0

Ni =
1
2
(
1 − η2

)
(1 + ξiξ) if ηi = 0

(18)

If these relations are used in a three dimensional oscillatory integral on
the surface ϕ, then the integral given in (15) can easily be converted
to an integral of the form given in (19).

I =

1∫
−1

1∫
−1

f(x(ξ, η), y(ξ, η), z(ξ, η))ejq(x(ξ,η),y(ξ,η),z(ξ,η)) |ϕ̄ξ × ϕ̄η| dξdη

(19)
By this way, an equivalent expression for Equation (15) is obtained to
which two dimensional Levin’s method can be applied directly.

3.1. A Special Case: Singularities in Two Dimensional
Levin’s Method

It was mentioned that, Levin’s method may be applied to oscillatory
integrals of the form (7) under the condition that the relations given
in (8) should be satisfied. If these conditions are not satisfied, then
the matrix A in the equation Ax = b becomes very close to a singular
matrix. As a consequence, Levin’s method does not work properly
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for those cases. For instance, in the forward scattering direction
the incidence and scattering directions will be the same (k̂s = k̂i).
Since the phase of the integrand of the PO integral given in (1) is
of the form k(k̂s − k̂i) · r̄′, the phase of the integrand vanishes around
forward scattering direction. Thus, in the vicinity of forward scattering
direction, the conditions given in (8) are not satisfied. Furthermore,
if the sizes of a patch are small, the phase variation within a patch
will also be small. Hence, the conditions given in (8) will be violated
again. This violation may be in both of the directions or in only one
direction.

Without loss of generality, assume that the condition |qξ| �
(b − a)−1 is not satisfied. Then it can be said that the integrand
is not oscillatory in ξ direction. Therefore, there is not any need to
employ special techniques to compute the integral in that direction; the
trapezoidal rule may be sufficient to give accurate results. However,
the integrand is still oscillatory in the η direction. To compute the
integral in that direction Levin’s method may be used but in this case
the integration will be one dimensional.

Assume that the function F is defined as in Equation (20).

F (ξ) =

d∫
c

f(ξ, η)ejq(ξ,η)dη (20)

If we substitute this equation into the Equation (7), then we obtain
the following integral which can be computed by trapezoidal rule.

I =

b∫
a

F (ξ)dξ (21)

⇒ I =
n∑

i=1

Δξ

2
(F (ξi−1) + F (ξi)) (22)

where F (ξi) is defined as

F (ξi) =

d∫
c

f(ξi, η)ejq(ξi,η)dη (23)

If the one dimensional operator given in Equation (3) is substituted
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into the Equation (23)

F (ξi)=

d∫
c

d

dη

(
p(ξi, η)ejq(ξi,n)

)
dη = p(ξi, d)ejq(ξi,d) − p (ξi, c) ejq(ξi,c)

(24)
is obtained. Now, each F (ξi) can be found by one dimensional Levin’s
method.

If the conditions given in the Equation (8) are not satisfied in
both directions, then the integral can be computed by two dimensional
trapezoidal rule assuming that the integrand is not oscillatory.

At this point, another important concern arises regarding the
decision of switching from Levin’s method to trapezoidal rule. Since
each isoparametric element is mapped to the interval [−1, 1]×[−1, 1] in
(ξ, η) domain, the conditions given in (8), for applying Levin’s method
to oscillatory integrals, are converted to

|qξ| , |qη| � 0.5 (25)

The experimental results show that if qξ, qη satisfy the condition
|qξ| , |qη| > 5 (i.e., their magnitudes are about 10 times the inverse
of the length of the integration interval), Levin’s integration algorithm
gives very accurate results. Therefore, the two dimensional Levin’s
method is used in this study provided that this condition holds. If the
condition is not satisfied in any direction, then a 10-point trapezoidal
integration rule is applied in that direction and the one dimensional
Levin’s method is applied in the other direction. If the condition is not
satisfied in both directions, then a two dimensional trapezoidal rule is
conducted over 100 grid points.

4. NUMERICAL RESULTS

In this section, the RCS of some simple targets are computed by
Levin’s integration method and the computational accuracy is tested
by comparing the results with those obtained by other techniques. For
these comparisons, three types of surfaces are used: flat, singly curved
and doubly curved surfaces.

Figure 2 and Figure 3 illustrate the monostatic and bistatic RCS
of a perfect electric conductor (PEC) square-shaped flat plate with side
length of 100λ which is shown in Figure 1.

For monostatic case, the plate is illuminated from φ = 90◦ and its
RCS is computed with respect to θ at 10 GHz. For bistatic case, the
plate is normally illuminated and its RCS is computed with respect
to θ on the plane φ = 90◦. The result of the Levin’s method is
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Figure 1. Simulation setup for PEC plate.
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Figure 2. Monostatic RCS of a PEC plate.

compared with the analytical result of the physical optics integral for
these problems. It can be observed from Figure 2 and Figure 3 that, the
results obtained by Levin’s method perfectly match with the analytical
solution, for both cases. Here, it is important to note the PEC plate
is modeled by only one single patch.

In order to obtain numerical information about the accuracy of
the Levins algorithm, a relative error is defined in (26). Since the PO
integral can be evaluated analytically for a rectangular PEC plate, the
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Figure 3. Bistatic RCS of a PEC plate.

relative error of the Levins algorithm can be attained by

Error =
1

Nangle

Nangle∑
i=1

∣∣∣σi
analytic − σi

levin

∣∣∣∣∣∣σi
analytic

∣∣∣ (26)

where Nangle is the number of observation angles and σi
analytic and

σi
levin are the RCS values at the ith observation angle computed

analytically and by Levin’s method, respectively. If the RCS values
illustrated in Figure 3 are used, the relative error of the Levin’s
algorithm, for the bistatic case, is obtained as 2.78 × 10−4 with an
observation resolution of 0.5◦ (for 181 observation angles). Here, it is
important to note that, due to the fact that the actual RCS values at
the observation angles θ = 30◦ and θ = 90◦ are very small, these angles
are discarded from the data points for a fair evaluation of the accuracy
of Levin’s algorithm.

The relative error of brute force integration may also be obtained
by substituting the RCS values computed by brute force integration
instead of the ones computed by Levins method in (26). The relative
error and CPU time of the brute force integration, for bistatic case,
for different sampling intervals are listed in Table 1. All of the
computations are performed on a Pentium IV 2.4 GHz PC with 512 MB
RAM. In addition to this, since MATLAB R© can handle matrix
operations faster than nested for loops, to speed up the computations,
the number of for loops is reduced to 2 from 3 (1 for observation angles
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Table 1. The relative error and CPU time of brute force integration
for different sampling intervals.

Sampling Interval Error CPU Time (s)

2
λ  0.598 20.7 

4
λ  0.1947 71.5 

8
λ  0.0507 276.8 

16
λ  0.0128 1136 

and 2 for double integration) by some modifications in the code.
It may be observed that the brute force integration cannot reach

the accuracy of Levin’s method even if the sampling interval is reduced
to λ/16. Moreover, Levin’s method computes the bistatic RCS of the
PEC plate in 2.03 seconds including all of the i/o processes for 181
observation angles.

In addition to the accuracy and run time analysis of Levin’s
integration technique discussed above, another performance check is
conducted to investigate the speed of Levin’s method for different
frequencies. In this performance analysis, the bistatic RCS of a square
flat plate, with a side length of 3 m, is computed at 10 different
frequencies starting from 1GHz to 10 GHz. The CPU times of each
run obtained by Levin’s algorithm are recorded and compared with
the ones obtained by brute force integration with a sampling interval
of λ/16. It can be observed from Figure 4 that the run time of Levin’s
algorithm remains almost constant (around 2 seconds). On the other
hand, the run time of brute force integration increases drastically with
increasing frequency.

The performance of Levin’s method has been proved to be
accurate for flat plates. However, in the previous sections it was
mentioned that Levin’s method is applicable to any surface modeled
as a quadrilateral. Indeed, one of the most important advantages of
Levin’s method is this property. Therefore, for a complete performance
check of this novel technique, further simulations are needed to be
conducted on curved surfaces.

The second simulation is computation of RCS of a singly curved
PEC screen. In this simulation a 5◦ sector of a cylindrical shell is
used as curved screen which is shown in Figure 4. The radius of the
cylinder is equal to 1m and its length is equal to 100λ at 10 GHz
frequency. The screen is illuminated from θ = 0◦ and its bistatic RCS
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Figure 4. Comparison of run times of Levin’s algorithm and brute
force integration for different frequencies.
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Figure 5. Simulation setup for singly curved screen.

is computed with respect to θ on the plane φ = 90◦. The results of
the second simulation are illustrated in Figure 5, where the Levin’s
method solution is compared with the brute force integration solution.
It can be observed from the figure that the results are very close to each
other. It should also be noted that the cylindrical shell was modeled
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Figure 6. Bistatic RCS of a singly curved PEC screen.
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Figure 7. Simulation setup for doubly curved screen.

by a single quadrilateral which makes the computation very efficient.
Finally, to test the performance of the Levin’s method on doubly

curved screens, a third simulation is conducted on a spherical PEC shell
as shown in Figure 6. In this simulation a 6◦ sector (in both curvature
directions) of a spherical shell with a radius of 1m is used. The screen
is illuminated from θ = 90◦, φ = 0◦ and its bistatic RCS is computed
with respect to φ on the cone θ = 90◦. In Figure 7, the Levin’s method
results for doubly curved screen are compared with the results of brute
force integration. From the plot, it may be claimed that the results are
in a good agreement. Similar to the previous experiments, the screen
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Figure 8. Bistatic RCS of a doubly curved PEC screen.

is modeled with only one quadrilateral.
These numerical simulations confirm that Levin’s method is an

effective and efficient technique for the computation of the PO fields
even on curved surfaces.

5. CONCLUSION

The most intricate part of RCS computation by PO is the integration
part. Since PO is valid at high frequencies, the complex exponential
term in the integrand of the PO integral becomes very oscillatory at
high frequencies. Hence, too many sampling points are needed with the
classical quadrature methods. To increase the computational efficiency
of PO, a novel fast integration technique, which is called Levin’s
integration method, is applied to electromagnetic scattering problems.
In this method, an accurate solution can be attained for an integral on
a rectangular domain by making use of only a few collocation points.
The integrand is approximated by some basis functions (monomials
in this study) and the integration is converted to solving a differential
equation where a nonoscillatory particular solution is obtained with the
help of a genius operator. In order to apply this model to arbitrary
shaped objects, the surfaces of the objects are modeled by 8-noded
isoparametric quadrilaterals. Then, with the help of some shape
functions, the integration domain is mapped to a rectangular domain
where Levin’s method is easily applicable.

Levin’s method is an efficient and fast way to compute the
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integrals with rapid oscillations. Since it can be applied to curved
surfaces, the number of patches used for target modeling can be
decreased drastically. Hence, computational efficiency of Levin’s
method is higher than the methods using planar patches to model the
targets. Moreover, the complexity of the algorithm is almost of order
zero with respect to frequency. That is, the number of computations
and CPU time does not change with frequency. Therefore, very large
facets (such as facets with a surface area of 10000λ2) may be used
for target modeling. This makes Levin’s method appropriate for large
targets like ships, planes and tanks.

Despite the advantages of Levin’s method, there are some
drawbacks restricting the usage of it. Due to the possible singularities
stated in the paper, Levin’s method cannot be applied to PO integrals
at low frequencies. Since a rapid phase variation within a facet is
also necessary for the application of the method, small facets are not
appropriate for this technique. Thus, for some cases the geometry
of a target may not be modeled precisely. Furthermore, Levin’s
method is not applicable to computation of the scattered fields in the
neighborhood of forward scattering region because of the same reason.
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