Vol. 6
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-03-04
Crack Detection Using a Hybrid Finite Difference Frequency Domain and Particle Swarm Optimization Techniques
By
Progress In Electromagnetics Research M, Vol. 6, 47-58, 2009
Abstract
A hybrid technique based on finite-difference frequency domain (FDFD) and particle swarm optimization (PSO) techniques is proposed to reconstruct the angular crack width and its position in the conductor and ability to detect the crack width, position, and its depth in single and multilayer dielectric objects. FDFD is formulated to calculate the scattered field after illuminating the object by a microwave transmitter. Two-dimensional model for the object is used. Computer simulations have been performed by means of a numerical program; results show the capabilities of the proposed approach. This paper presents a computational approach to the two dimensional inverse scattering problem based on FDFD method and PSO technique to determine the crack position, width and depth. By using the scattered field, the specifications of the crack are reconstructed.
Citation
Saber Zainud-Deen, Walaa Hassan, and Kamal Awadalla, "Crack Detection Using a Hybrid Finite Difference Frequency Domain and Particle Swarm Optimization Techniques," Progress In Electromagnetics Research M, Vol. 6, 47-58, 2009.
doi:10.2528/PIERM09012404
References

1. Sekiguchi, H. and H. Shirai, "A simple estimation formula for a crack depth using the RCS dip," Proc. IEEE AP-S Int. Conf., Vol. 3, 220-223, Columbus, OH, USA, Jun. 2003.

2. Qing, A., C. K. Lee, and L. Jen, "Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic alogrithm ," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, No. 3, 665-676, Mar. 2001.
doi:10.1109/36.911123

3. Zainud-Deen, S. H., M. S. Ibrahim, and E. M. Ali, "A hybrid finite difference frequency domain and particle swarm optimization techniques for forward and inverse electromagnetic scattering problems," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1575-1580, Verona, Italy, Mar. 2007.

4. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

5. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Microwave tomography: A two-dimensional Newton iterative scheme," IEEE Trans. Microw. Theory Tech., Vol. 46, 1654-1659, Nov. 1998.

6. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Trans. Med. Imag., Vol. 9, 218-225, Jun. 1990.
doi:10.1109/42.56334

7. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique ," IEEE Trans. Microw. Theory Tech., Vol. 52, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016

8. Xiao, F. and H. Yabe, "Microwave imaging of perfect conducting cylinders from real data by micro genetic algorithm coupled with deterministic method," IEICE Trans. Electron., Vol. E81-C, 1784-1792, 1998.

9. Yee, K. S., "Numerical solution of initial boundary value problems using Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 5, 302-307, May 1966.

10. Al Sharkawy, M. H., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering from three dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 666-673, Feb. 2006.
doi:10.1109/TAP.2005.863129

11. Zainud-Deen, S. H., E. El-Deen, and M. S. Ibrahem, "Electro-magnetic scattering by conducting/dielectric objects," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1866-1871, Verona, Italy, Mar. 2007.

12. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

13. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, signalobjective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, Mar. 2007.
doi:10.1109/TAP.2007.891552

14. Noh, Y. C. and S. D. Choi, "TM scattering from hollow slotted circular cylinder with thickness," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 909-910, May 1997.
doi:10.1109/8.575647

15. Jankovic, D., M. Labelle, D. C. Chang, J. M. Dunn, and R. C. Booton, "A hybrid method for the solution of scattering from inhomogenouse dielectric cylinders of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 42, 1215-1222, Sep. 1994.
doi:10.1109/8.318642