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Abstract—A hybrid technique based on finite-difference frequency
domain (FDFD) and particle swarm optimization (PSO) techniques is
proposed to reconstruct the angular crack width and its position in
the conductor and ability to detect the crack width, position, and its
depth in single and multilayer dielectric objects. FDFD is formulated
to calculate the scattered field after illuminating the object by a
microwave transmitter. Two-dimensional model for the object is used.
Computer simulations have been performed by means of a numerical
program; results show the capabilities of the proposed approach. This
paper presents a computational approach to the two dimensional
inverse scattering problem based on FDFD method and PSO technique
to determine the crack position, width and depth. By using the
scattered field, the specifications of the crack are reconstructed.

1. INTRODUCTION

Crack detection is one of the important tasks for the industrial
materials and products, since even small crack on the product surface
could be fatal from the standpoint of safety. Traditionally, acoustic
or electromagnetic waves have been used to detect the crack non-
destructively. The crack width and length may be inspected by
scanning the actual surface picture. But the depth of small crack may
be difficult to evaluate nondestructively. A simple estimation formula
for a crack depth on a conducting ground plane using the radar cross
section dip is explained in [1].
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The objective of the inverse scattering is to determine the
electromagnetic properties of the scatterer from scattered field
measured outside. Inverse scattering problems have attracted attention
in the past few years [2–4]. The detection of the crack represents a
complex inverse scattering problem that needs to be solved iteratively.
That means the error between the measured data and the scattered
fields computed from the trial solution is minimized at the end of the
iteration, and the trial solution is then progressively adjusted towards
the width, position, and depth of the crack. It is well-known that
traditional deterministic techniques [5, 6] used for fast reconstruction
of microwave images suffer from a major drawback, where the final
image is highly dependent on the initial trial solution. In addition,
it is often difficult to decide the adequacy of the initial trial solution
for ensuring the correctness of the final solution. To overcome this
obstacle, population based stochastic methods such as the genetic
algorithm (GA) and PSO have become attractive alternatives to
reconstruct microwave images [7, 8]. These techniques consider the
imaging problem as a global optimization problem by imparting each
individual within the population with its own fitness value as per the
objective function defined for the problem, and reconstruct the correct
image by searching for the optimal solution through the use of either
rivalry or cooperation strategies in the problem space.

In this paper, the FDFD is used for the direct problem, a hybrid
technique from FDFD and PSO is used for the inverse electromagnetic
scattering problem. For the direct problem, the scattered field is
to be calculated using the FDFD method assuming that the crack
position, width and depth are known. For the inverse problem, the
crack position, width, and depth are determined where the scattered
field in free space is given using the global searching scheme PSO. This
paper is organized as follows. In Section 2, the theoretical formulation
for the FDFD method is presented. The general principle of the PSO
is described. Numerical results for various cracks in conducting and
dielectric objects in two dimensions are given in Section 3. Section 4
is the conclusions.

2. THEORETICAL BACKGROUND

2.1. FDFD Method

Starting from Maxwell’s equations for the total electric and magnetic
fields for time harmonic convention ejωt, and σ = 0

∇× Ētotal = −jωμH̄total

∇× H̄total = jωεĒtotal

}
(1)
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By separating the total fields into incident and scattered field
components, then

∇× (
Ēinc + Ēscat

)
= −jωμ

(
H̄inc + H̄scat

)
∇× (

H̄inc + H̄scat

)
= jωε

(
Ēinc + Ēscat

)
}

(2)

The FDFD method is based on approximating the spatial
derivative by finite differences. The first step in constructing an FDFD
algorithm is to discretize the computational domain into a number of
cells. Yee [9], constructed an algorithm that solves for both electric and
magnetic fields using Maxwell’s equations. Based on the Yee space
lattice, one can fit these field components to the FDFD expressions
when the second-order accurate central difference scheme is used to
discretize the space derivatives in Maxwell’s equations. To truncate
the computational domain, layers of absorbing boundary based on
the perfectly matched layer (PML) technique are used. The finite
difference frequency domain is simplest in formulation and most flexible
in modeling arbitrarily shaped inhomogenously filled and anisotropic
scatterers. A detailed discussion of the FDFD method is provided
in [10, 11].

2.2. The Procedure

In this work, the FDFD method, for the first time, has been used to
get the scattered field for a certain known crack (position, width, and
depth) as the first step. The crack used is specified and assumed to
satisfy what might actually exist in real life. The second step is to
assume several initial cracks, which are completely different from one
used in the first step. Then, using the FDFD to get the scattered field
from each crack. The third step is to find out the mean square error for
each of the cracks of the second step with the results of the first step
to be considered as the measured results. The fourth and final step is
to apply the PSO algorithm on the population generated in the second
and third steps to go iteratively to the optimum solution, which should
be within a certain specified value of the error between the scattered
field of Step 1 and the scattered field of the final achieved estimation
of the crack.

2.3. PSO Algorithm

PSO is a form of evolutionary computation technique. The PSO starts
with initial population (particles) with random velocities which are
flown through the problem space. The particles have memory and
each particle keeps track of previous best position and corresponding
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fitness. The previous best value is called “personal best”, Pbest . It also
has another value called “global best”, Gbest , which is the best value of
all the particles Pbest in the swarm for each iteration. The basic concept
of PSO technique lies in accelerating each particle towards its Pbest and
the Gbest locations at each time step. The velocity and position of the
particles are changed according to Equations (3) and (4) respectively.
Vid and Xid represent the velocity and position of the ith particle with
“d” dimensions respectively.

Vid = W × Vid + C1 × rand1 × (Pbestid − Xid)
+C2 × rand2 × (Gbestid − Xid) (3)

Xid = Xid + Vid (4)

where W is the inertia weight that controls the exploration and
exploitation of the search space. The random number function rand1

and rand2 returns a number between 0.0 and 1.0. C1 and C2,
the cognition and social components respectively are the acceleration
constants which change the velocity of a particle towards the Pbest and
Gbest. A detailed discussion of the particle swarm optimizer used in
this paper is provided in [12, 13].

By starting from a defined residual as the difference between the
calculated scattered field, Escat and the measured scattered field, Emeas ,
as

Ediff = Escat − Emeas (5)

The optimization will then be performed on the square norm F

F = ‖Escat − Emeas‖2 (6)

The goal is then to find the global minimum of this function.

3. NUMERICAL RESULTS

A computer program was written in Matlab code for implementing the
FDFD formulation. This implementation was validated by computing
the scattered field from several configurations includes slotted metallic
and dielectric bodies. Fig. 1 shows the numerical results of the
monostatic radar cross section of circular cylinder with a slot compared
with the mode-matching technique (MMT) results [14] at frequency
300 MHz. The outer radius of ka = 3.456 and two different inner radii
of b = a − λ/20 and b = 0.5a for Φo = 30◦ and Φo = 60◦. Excellent
agreements are obtained.

The inverse problem to be considered is given the measured
scattered field, determine the position, width, and depth of the
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crack in the object. Due to the absence of the measured data,
the FDFD technique is used to synthesize the measured scattered
field values for the computation of direct solution. Assume that a
TMz (transverse magnetic to z-axis) plane wave is perpendicularly
incident upon a perfect conducting circular cylinder Einc =
âz exp(jβ(x cos Φi + y sinΦi)). Φ, Φo, rd, and Φi are the crack position,
width, depth, and incident angle with respect to the x-axis, respectively
(see Fig. 1(a)). A hybrid FDFD/PSO is used for reconstructing the
crack position, width, and depth of the crack on the object.
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Figure 1. Monostatic radar cross section of circular cylinder with
a slot. The outer radius of ka = 3.456 and two different inner radii
b = a− λ/20 and b = 0.5a. (a) Geometry of a hollow circular cylinder
with a crack. (b) Φo = 30◦ and b = a − λ/20. (c) Φo = 30, and
b = 0.5a. (d) Φo = 60◦ and b = a − λ/20. (e) Φo = 60, and b = 0.5a.
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Figure 2. The position of the crack on circular cylinder ka = 3.456
and b = 0.5a at different values of crack position Φ, width Φo = 1◦,
depth rd = 0.5a, and Φi = 0◦.
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Figure 3. Bistatic RCS of circular cylinder with a crack position
Φ = 119◦, width Φo = 1◦, and rd = 0.5a. The outer radius of
ka = 3.456 and inner radius b = 0.5a.

Figure 2 shows the construction of circular cylinder with cracks in
different positions. The outer cylinder radius of ka = 3.456, and inner
radius b = 0.5a. A comparison between the true and calculated values
using PSO technique is shown in Table 1. Good agreement between
the true and the calculated values are obtained. The bistatic radar
cross section for the crack position Φ = 119◦, width Φo = 1◦, and
depth rd = 0.5a is shown in Fig. 3.
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Table 1. A comparison between the true and calculated values of
position and width of the crack, the crack depth rd = 0.5a.

Position Φ Width Φo

(degree) (degree)

True Calculated True Calculated

61 61.001 1 0.9983

61 61.323 2 1.989

61 60.841 3 3.3853

119 119 1 1

119 118.86 2 2.1384

119 118.89 3 3

219 219.02 1 1.078

219 219.08 2 2.0674

219 219.14 3 3.4428

309 308.998 1 0.972

309 309.47 2 1.8828

309 309.29 3 3.0204
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Figure 4. The reconstruction of the crack position, width, and depth
on the circular cylindrical dielectric tube with a = 0.3λ, b = 0.25λ,
and εr = 4. At different values of the crack depth rd.
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Table 2. A comparisons between the true and calculated values of
position, width, and depth of the crack.

Position Φ Width Φo Depth rd

(degree) (degree)

True Calculated True Calculated True Calculated

61 61.028 1 1.22 0.05 0.05

(0.17 a)

61 60.913 2 2 0.05 0.05

61 60.991 3 3 0.05 0.05

61 61.22 1 1.033 0.04 0.04086

(0.13 a)

61 61.012 2 2.1243 0.04 0.03689

61 61.049 3 3 0.04 0.03993

61 61.201 1 1.00121 0.02 0.023242

(0.07 a)

61 61.101 2 2.0932 0.02 0.0245

61 60.8789 3 2.887 0.02 0.02

Figure 4 shows the reconstruction of the crack position Φ, width
Φo, and depth rd of circular cylindrical dielectric tube with outer
radius “a” = 0.3λ and inner radius “b” = 0.25λ and relative dielectric
constant εr = 4. Table 2 shows a comparison between the true and the
calculated values using PSO technique. Good agreement is obtained.
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Figure 5. Bistatic radar cross section pattern of four layered dielectric
object Φi = 0◦, (a1 = 0.15λ, a2 = 0.2λ, a3 = 0.25λ, a4 = 0.3λ), and
(εr1 = 8, εr2 = 6, εr3 = 4, εr4 = 2).
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Figure 5 compares the bistatic radar cross section patteren of a
four layered dielectric object using the FDFD and that obtained by
Jankovic et al. [15]. The object dimensions are a1 = 0.15λ, a2 = 0.2λ,
a3 = 0.25λ, a4 = 0.3λ, εr1 = 8, εr2 = 6, εr3 = 4, and εr4 = 2
for TMz plane wave. Good agreement is depicted. Fig. 6 shows the
reconstruction of the crack width Φo and depth rd on the object, crack
position Φ = 61◦. Table 3 shows a comparison between the true and the
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Figure 6. The reconstruction of the crack depth on four layered
dielectric object. (a1 = 0.15λ, a2 = 0.2λ, a3 = 0.25λ, a4 = 0.3λ)
and (εr1 = 8, εr2 = 6, εr3 = 4, εr4 = 2) at crack position Φ = 61◦,
Φo = 1◦ and Φi = 0.
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Figure 7. Bistatic pattern of circular cylindrical dielectric tube with
two crack positions Φ1 and Φ2. The outer radius a = 0.3, b = 0.25λ,
and relative dielectric constant, εr2 = 4
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calculated values using PSO technique. Good agreement is obtained.
Fig. 7 shows the reconstruction of the circular cylindrical dielectric
tube with inner radius b = 0.25λ and outer radius a = 0.3λ with two
crack positions Φ1 and Φ2. Table 4 shows a comparison between the
true and the calculated values using PSO technique. Good agreement
is obtained. To improve the accuracy, more iterations will be needed.

Table 3. A comparisons between the true and calculated values of
width, and depth of the crack.

Width Φo Depth rd

(degree)

True Calculated True Calculated

1 0.9967 0.03 (0.1 a4) 0.02986

1 1.0014 0.07 (0.23 a4) 0.069864

1 1 0.13 (0.43 a4) 0.130401

1 1 0.17 (0.57 a4) 0.168915

2 2.0083 0.03 (0.1 a4) 0.031995

2 2.0118 0.07 (0.23 a4) 0.070409

2 1.98559 0.13 (0.43 a4) 0.13167

2 1.97928 0.17 (0.57 a4) 0.16883

3 3 0.03 (0.1 a4) 0.03039

3 3 0.07 (0.23 a4) 0.07276

3 3 0.13 (0.43 a4) 0.13183

3 3 0.17 (0.57 a4) 0.17

Table 4. A comparisons between the true and calculated values of
width, and depth of the crack.

Position Φ1, Φ2 Width Φo1, Φo2

(degree) (degree)

True Calculated True Calculated

61, 119 61.22, 119.19 1, 1 0.7783, 0.932
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4. CONCLUSION

The hybrid technique, FDFD/PSO for reconstruction of the crack
position, and depth has been proposed. The forward problem is solved
using the FDFD method. The inverse problem is reformulated into
an optimization one and then the global searching scheme PSO is
employed to search the parameter space. By using the PSO, the
crack position, width and depth can be successfully reconstructed.
Numerical results have been carried out and good reconstruction for
crack has been obtained even in multilayer dielectric object or multiple
cracks on the object.
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