Vol. 90
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-02-10
Hybrid Particle Swarm-Based Algorithms and Their Application to Linear Array Synthesis
By
Progress In Electromagnetics Research, Vol. 90, 63-74, 2009
Abstract
A heuristic particle swarm optimization (PSO) based algorithm is presented in this work and the novel hybrid approach is applied to linear array synthesis considering complex weights and directive element patterns so as to analyze its usefulness and limitations. Basically, classical PSO schemes are modified by introducing a tournament selection strategy and the downhill simplex local search method, so that the hybrid algorithms proposed combine the strengths of the PSO to initially explore the search space, the pressure exerted by the genetic selection operator to manage and speed up the search, and finally, the ability of the local optimization technique to quickly descend to the optimum solution. Four classical real-valued PSO schemes are taken as reference and synthesis results for a 60-element linear array comparing those classical schemes and the hybridized ones are reported and discussed in order to show the improvements achieved by the hybrid approaches.
Citation
Jesus Ramon Perez Lopez, and Jose Basterrechea, "Hybrid Particle Swarm-Based Algorithms and Their Application to Linear Array Synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212
References

1. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, 2001.

2. Lim, T. S., V. C. Koo, H. T. Ewe, and H. T. Chuah, "High-frequency phase error reduction in sar using particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 795-810, 2007.
doi:10.1163/156939307780749110

3. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

4. Lee, K. C., C. W. Huang, and Y. H. Chen, "Analysis of nonlinear microwave circuits by particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1353-1365, 2007.
doi:10.1163/156939307783239474

5. Lim, T. S., V. C. Koo, H. T. Ewe, and H. T. Chuah, "A sar autofocus algorithm based on particle swarm optimization," Progress In Electromagnetics Research B, Vol. 1, 159-176, 2008.
doi:10.2528/PIERB07102501

6. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, K. R. Mahmoud Visiting, and S. H. Zainud-Deen, "Performance of circular Yagi-Uda arrays for beamforming applications using particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 353-364, 2008.
doi:10.1163/156939308784160866

7. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: real-number, binary, singleobjective and multiobjective implementation," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

8. Perez, J. R. and J. Basterrechea, "Comparison of different heuristic optimization methods for near-field antenna measurements," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 549-555, 2007.
doi:10.1109/TAP.2007.891508

9. Huang, T. and A. Sanagavarapu, "A microparticle swarm optimizer for the reconstruction of microwave images," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 568-576, 2007.
doi:10.1109/TAP.2007.891545

10. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, PIER 82, 319-332, 2008.

11. Li, J. F., B. H. Sun, Q. Z. Liu, and L. Gong, "PSO-based fast optimization algorithm for broadband array antenna by using the cubic spline interpolation," Progress In Electromagnetics Research Letters, Vol. 4, 173-181, 2008.
doi:10.2528/PIERL08100407

12. Liu, X. F., Y. B. Chen, Y. C. Jiao, and F. S. Zhang, "Modified particle swarm optimization for patch antenna design based on IE3D," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1819-1828, 2007.

13. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
doi:10.1163/156939306779292273

14. Li, W. T., L. Xu, and X. W. Shi, "Ah ybrid of genetic algorithm and particle swarm optimization for antenna design," PIERS Online, Vol. 4, No. 1, 56-60, 2008.

15. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, PIER 79, 353-366, 2008.

16. Liu, X. F., Y. C. Jiao, and F. S. Zhang, "Conformal array antenna design using modified particle swarm optimization," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 207-218, 2007.

17. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propagat., Vol. 52, No. 3, 771-779, 2004.
doi:10.1109/TAP.2004.825102

18. Perez, J. R. and J. Basterrechea, "Particle swarms applied to array synthesis and planar near-field antenna measurement," Microwave Opt. Technol. Lett., Vol. 50, No. 2, 544-548, 2008.
doi:10.1002/mop.23089

19. Perez, J. R. and J. Basterrechea, "Particle swarm optimization with tournament selection for linear array synthesis," Microwave Opt. Technol. Lett., Vol. 50, No. 3, 627-632, 2008.
doi:10.1002/mop.23148

20. Perez, J. R. and J. Basterrechea, "Particle-swarm optimization and its application to antenna far-field-pattern prediction from planar scanning," Microwave Opt. Technol. Lett., Vol. 44, No. 5, 398-403, 2005.
doi:10.1002/mop.20648

21. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley & Sons, 1999.

22. Nelder, J. A. and R. Mead, "A simplex method for function minimization," Computer Journal, Vol. 7, No. 4, 308-313, 1965.

23. Wolpert, D. H. and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evolutionary Comp., Vol. 1, No. 1, 67-82, 1997.
doi:10.1109/4235.585893

24. Fulginei, F. R. and A. Salvini, "Comparative analysis between modern heuristics and hybrid algorithms," COMPEL: Int. Journal for Comp. and Mathematics in Electrical and Electronic Engineering, Vol. 26, No. 2, 259-268, 2007.
doi:10.1108/03321640710727629

25. Quevedo-Teruel, O., E. Rajo-Iglesias, and A. Oropesa-Garca, "Hybrid algorithms for electromagnetic problems and the nofree-lunch framework," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 742-749, 2007.
doi:10.1109/TAP.2007.891569