Vol. 12
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-01-13
Determination of Propagation Constants and Material Data from Waveguide Measurements
By
Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009
Abstract
This paper presents an analysis with the aim of characterizing the electromagnetic properties of an arbitrary linear, bianisotropic material inside a metallic waveguide. The result is that if the number of propagating modes is the same inside and outside the material under test, it is possible to determine the propagation constants of the modes inside the material by using scattering data from two samples with different lengths. Some information can also be obtained on the cross-sectional shape of the modes, but it remains an open question if this information can be used to characterize the material. The method is illustrated by numerical examples, determining the complex permittivity for lossy isotropic and anisotropic materials.
Citation
Daniel Sjöberg, "Determination of Propagation Constants and Material Data from Waveguide Measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304
References

1. Akhtar, M. J., L. E. Fehrer, and M. Thumm, "A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials," IEEE Trans. Microwave Theory Tech, Vol. 54, No. 5, 2011-2022, May 2006.
doi:10.1109/TMTT.2006.873623

2. Baker-Jarvis, J., R. G. Geyer, J. John H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials: A comparison of techniques," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 4, 571-577, Aug. 1998.
doi:10.1109/94.708274

3. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990.
doi:10.1109/22.57336

4. Barybin, A. A., "Modal expansions and orthogonal complements in the theory of complex media waveguide excitation by external sources for isotropic, anisotropic, and bianisotropic media," Progress In Electromagnetics Research, PIER 19, 241-300, 1998.

5. Bresler, A. D., "The far fields excited by a point source in a passive dissipationless anisotropic uniform waveguide," IRE Trans. on Microwave Theory and Techniques, Vol. 7, No. 2, 282-287, Apr. 1959.
doi:10.1109/TMTT.1959.1124694

6. Bresler, A. D., "On the discontinuity problem at the input to an anisotropic waveguide," IRE Trans. on Antennas and Propagation, Vol. 7, No. 5, 261-272, Dec. 1959.
doi:10.1109/TAP.1959.1144754

7. Bresler, A. D., "Vector formulations for the field equations in anisotropic waveguides," IRE Trans. on Microwave Theory and Techniques, Vol. 7, No. 2, 298, Apr. 1959.
doi:10.1109/TMTT.1959.1124701

8. Bresler, A. D., G. H. Joshi, and N. Marcuvitz, "Orthogonality properties for modes in passive and active uniform wave guides," J. Appl. Phys., Vol. 29, No. 5, 794-799, May 1958.
doi:10.1063/1.1723286

9. Busse, G., J. Reinert, and A. F. Jacob, "Waveguide characterization of chiral material: Experiments," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 297-301, 1999.
doi:10.1109/22.750230

10. Damaskos, N. J., R. B. Mack, A. L. Maffett, W. Parmon, and P. L. E. Uslenghi, "The inverse problem for biaxial materials," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 4, 400-405, Apr. 1984.
doi:10.1109/TMTT.1984.1132689

11. De Hoop, A. T., Handbook of Radiation and Scattering of Waves, Academic Press, 1995.

12. Deshpande, M. D., C. J. Reddy, P. I. Tiemsin, and R. Cravey, "A new approach to estimate complex permittivity of dielectric materials at microwave frequencies using waveguide measurements," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 3, 359-366, Mar. 1997.
doi:10.1109/22.563334

13. Frickey, D. A., "Conversions between S, Z, Y , h, ABCD, and T parameters which are valid for complex source and load impedance," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 2, 205-211, Feb. 1994.
doi:10.1109/22.275248

14. Gustafsson, M., Wave Splitting in Direct and Inverse Scattering Problems, PhD thesis, Lund Institute of Technology, Department of Electromagnetic Theory, P. O. Box 118, S-221 00 Lund, 2000. http://www.eit.lth.se+.

15. Queffelec, P., M. L. Floc'h, and P. Gelin, "Nonreciprocal cell for the broad-band measurement of tensorial permeability of magnetized ferrites: Direct problem," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 390-397, Aug. 1999.
doi:10.1109/22.754870

16. Queffelec, P., M. L. Floc'h, and P. Gelin, "New method for determining the permeability tensor of magnetized ferrites in a wide frequency range," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1344-1351, Aug. 2000.
doi:10.1109/22.859479

17. Reinert, J., G. Busse, and A. F. Jacob, "Waveguide characterization of chiral material: Theory," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 290-296, 1999.
doi:10.1109/22.750227

18. Sjoberg, D., "Homogenization of dispersive material parameters for Maxwell's equations using a singular value decomposition," Multiscale Modeling and Simulation, Vol. 4, No. 3, 760-789, 2005.
doi:10.1137/040614153

19. Sjoberg, D., C. Engstrom, G. Kristensson, D. J. N. Wall, and N. Wellander, "A Floquet-Bloch decomposition of Maxwell's equations, applied to homogenization," Multiscale Modeling and Simulation, Vol. 4, No. 1, 149-171, 2005.
doi:10.1137/040607034

20. Wolfson, B. J. and S. M. Wentworth, "Complex permittivity and permeability measurement using a rectangular waveguide," Microwave Opt. Techn. Lett., Vol. 27, No. 3, 180-182, Nov. 2000.
doi:10.1002/1098-2760(20001105)27:3<180::AID-MOP9>3.0.CO;2-D

21. Wu, X., "A linear-operator formalism for bianisotropic waveguides," Int. J. Infrared and MM Waves, Vol. 16, No. 2, 419-434, 1995.
doi:10.1007/BF02096328

22. Xu, Y. and R. G. Bosisio, "An efficient method for study of general bi-anisotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 873-879, Apr. 1995.
doi:10.1109/22.375237

23. Xu, Y. and R. G. Bosisio, "A study on the solutions of chirowaveguides and bianisotropic waveguides with the use of coupled-mode analysis," Microwave Opt. Techn. Lett., Vol. 14, No. 5, 308-311, Apr. 1997.
doi:10.1002/(SICI)1098-2760(19970405)14:5<308::AID-MOP17>3.0.CO;2-2