Vol. 5
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-12-05
A Common Theoretical Basis for Preconditioned Field Integral Equations and the Singularity Expansion Method
By
Progress In Electromagnetics Research M, Vol. 5, 111-136, 2008
Abstract
It is demonstrated that there is a common theoretical basis for the Singularity Expansion Method (SEM) and stabilized, preconditioned electric field and magnetic field integral equations (EFIE, MFIE) defining radiation and scattering from a closed perfect electric conductor in a homogeneous medium. An operator relation termed the Calderon preconditioner links the MFIE and EFIE, based on the fundamental Stratton-Chu integral representations for the problem geometry. This preconditioner is known to stabilize the ill-posed first kind EFIE, yielding the Modified EFIE (MEFIE). The same preconditioner has been applied to the weakly singular MFIE kernel, giving a Modified MFIE (MMFIE), the equation then being solved using the Fredholm determinant theory. Since this analytical integral theory is the foundation of the SEM, it follows that the Calderon preconditioner enables stabilized and common SEM representations to be defined for both the MEFIE and MMFIE. For a finite-sized object admitting only pole singularities, the solution of the preconditioned EFIE and MFIE is equivalent to the frequency-domain SEM solution. The common SEM representation differs only in the coupling coefficient terms. Coupling coefficients for the MFIE are known, however, explicit formulations for the EFIE, and the modified coupling coefficients for the MEFIE and MMFIE are new contributions.
Citation
Robert J. Fleming, "A Common Theoretical Basis for Preconditioned Field Integral Equations and the Singularity Expansion Method," Progress In Electromagnetics Research M, Vol. 5, 111-136, 2008.
doi:10.2528/PIERM08110501
References

1. Baum, C., "On the singularity expansion method for the solution of electromagnetic interaction problems," Interaction Note 88, December 1971.

2. Baum, C., "Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers," Proceedings of the IEEE, Vol. 64, 1598-1616, November 1976.
doi:10.1109/PROC.1976.10379

3. Baum, C., Transient Electromagnetic Fields, No. The Singularity Expansion Method, 128-177, Sprinker-Verlag, 1976.

4. Licul, S. and W. Davis, "Unified frequency and time-domain antenna modeling and characterization," IEEE Transactions on Antennas and Propagation, Vol. 53, 2882-2888, September 2005.
doi:10.1109/TAP.2005.854533

5. Chauveau, J., N. de Beaucoudrey, and J. Sailllard, "Selection of contributing natural poles for the characterization of perfectly conducting targets in resonance region," IEEE Transactions on Antennas and Propagation, Vol. 55, 2610-2616, September 2007.
doi:10.1109/TAP.2007.904081

6. Baum, C., E. Rothwell, K. Chen, and D. Nyquist, "The singularity expansion method and its application to target identification," Proceedings of the IEEE, Vol. 79, 1481-1492, October 1991.

7. Sarkar, T. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas and Propagation Magazine, Vol. 37, 48-55, February 1995.
doi:10.1109/74.370583

8. Li, L. and C. Liang, "Generalized system function analysis of exterior and interior resonances of antenna and scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 52, 2064-2072, August 2004.
doi:10.1109/TAP.2004.832319

9. Miller, E. and G. Burke, "Using model-based parameter estimation to increase the physical interpretability and numerical efficiency of computational electromagnetics," Computer Physics Communications, Vol. 68, 43-75, November 1991.

10. Werner, D. and R. Allard, "The simultaneous interpolation of antenna radiation patterns in both the spatial and frequency domains using model-based parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 48, 383-392, March 2000.
doi:10.1109/8.841899

11. Kress, R., Linear Integral Equations, Springer, 1989.

12. Canning, F., "Singular value decomposition of integral equations of em and applications to the cavity resonance problem ," IEEE Transactions on Antennas and Propagation, Vol. 37, 1156-1163, September 1989.
doi:10.1109/8.35796

13. Marin, L. and R. Latham, "Representation of transient scattered fields in terms of free oscillations of bodies," Proceedings of the IEEE, 640-641, May 1972.
doi:10.1109/PROC.1972.8712

14. Marin, L., "Natural mode representation of transient scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 21, 809-818, November 1973.

15. Adams, R. and G. Brown, "Stabilisation procedure for electric field integral equation," Electronics Letters, Vol. 35, 2015-2016, November 1999.

16. Adams, R. J., "Physical and analytical properties of a stabilized electric field integral equation ," IEEE Transactions on Antennas and Propagation, Vol. 52, 362-372, February 2004.
doi:10.1109/TAP.2004.823957

17. Adams, R. J., "Combined field integral equation formulations for electromagnetic scattering from convex geometries," IEEE Transactions on Antennas and Propagation, Vol. 52, 1294-1303, May 2004.
doi:10.1109/TAP.2004.827246

18. Adams, R. and N. Champagne, "A numerical implementation of a modified form of the electric field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 52, 2262-2266, September 2004.
doi:10.1109/TAP.2004.834112

19. Mautz, J. and R. Harrington, "H-field, E-field and combined-field solutions for conducting bodies of revolution," A.E. U, Vol. 32, 157-163, 1978.

20. Poggio, A. and E. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, 159-164, R. Mittra (ed.), Pergamon, Oxford, 1973.

21. Maue, A., "Zur formuliering, eines allgemenen beugengsproblems durch eine integralgleichung," Z. Phys., Vol. 126, No. 7, 601-618, 1949.
doi:10.1007/BF01328780

22. Hsiao, G. and R. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, 316-328, March 1997.
doi:10.1109/8.558648

23. Andriulli, F., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative calderon preconditioner for the electric field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 56, 2398-2412, August 2008.
doi:10.1109/TAP.2008.926788

24. Jones, D., Methods in Electromagnetic Wave Propagation, Engineering Science Series, Oxford University Press, 1994.

25. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction, Springer-Verlag, 2001.

26. Dolph, C. and S. Cho, "On the relationship between the singularity expansion method and the mathematical theory of scattering," IEEE Transactions on Antennas and Propagation, Vol. 28, 888-896, November 1980.

27. Pocklington, H., "Electrical oscillations in wires," Proceedings of Cambridge Phil. Soc., Vol. 9, 324-332, 1897.

28. Oseen, C., "Uber die elektromagnetische Schwingungen an dünnen Stäben," Ark. Mat. Astron. Fys., Vol. 9, 1-27, 1914.

29. Hallen, E., "Uber die elektrischen Schwingungen in drahtförmigen Leitern," Uppsala Univ. Arsskr., No. 1, 1-102, 1930.

30. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

31. Ross, G., "A time domain criterion for the design of wideband radiating elements ," IEEE Transactions on Antennas and Propagation, Vol. 16, 355-356, May 1968.
doi:10.1109/TAP.1968.1139174

32. Schmitt, H., C. Harrison, Jr, C. Williams, and Jr, "Calculated and experimental response of thin cylindrical antennas to pulse excitation," IEEE Transactions on Antennas and Propagation, Vol. 14, 120-127, March 1966.
doi:10.1109/TAP.1966.1138652

33. Michalski, K., "Bibliography of the singularity expansion method and related topics," Electromagnetics, Vol. 1, 493-511, 1981.
doi:10.1080/02726348108915153

34. Hanson, G., "An sem analysis of the voltage induced upon a printed strip antenna by a transient plane wave," IEEE Transactions on Antennas and Propagation, Vol. 41, 1742-1746, December 1993.
doi:10.1109/8.273321

35. Fikioris, G., "A note on the method of analytical regularization," IEEE Transactions on Antennas and Progagation Magazine, Vol. 43, 34-40, April 2001.

36. Nosich, A. I., "The method of analytical regularization in wave scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas and Propagation Magazine, Vol. 41, 34-49, June 1999.
doi:10.1109/74.775246

37. Burton, A. and G. Miller, "The application of integral equation methods to the numerical solution of some exterior boundary value problems," Proc. Roy. Soc. London A., Vol. 323, 201-210, 1971.
doi:10.1098/rspa.1971.0097

38. Marks, R. B., "Application of the singular function expansion to an integral equation for scattering," IEEE Transactions on Antennas and Propagation, Vol. 34, 725-728, May 1986.
doi:10.1109/TAP.1986.1143884

39. Marks, R. B., "The singular function expansion in time-dependent scattering," IEEE Transactions on Antennas and Propagation, Vol. 37, 1559-1565, December 1989.
doi:10.1109/8.45098

40. Liu, Z., R. Adams, and L. Carin, "Well-conditioned mlfma formulation for closed pec targets in the vicinity of a half space," IEEE Transactions on Antennas and Propagation, Vol. 51, 2822-2829, October 2003.

41. Yaghjian, A., "Banded-matrix preconditioning for electric-field integral equations," Proc. IEEE Antennas and Propagation Int. Symp., 1806-1809, 1997.

42. Marin, L., "Natural mode representation of transient scattering from rotationally symmetric bodies," IEEE Transactions on Antennas and Propagation, Vol. 22, 266-274, March 1974.
doi:10.1109/TAP.1974.1140779

43. Mikhlin, S. G., Mathematical Physics, An Advanced Course, Vol. 11 of Applied Mathematics and Mechanics, North Holland Publishing Company, 1970.

44. Young, N., An Introduction to Hilbert Space, Cambridge University Press, 1988.

45. Smithies, F., Integral Equations, Cambridge University Press, 1958.

46. Goursat, E., A Course in Mathematical Analysis, Vol. 2, Ginn and Company, 1917.

47. Golberg, M., Solution Methods for Integral Equations Theory and Applications, Mathematical Concepts and Methods in Science and Engineering, Plenum Press, 1979.

48. Steinberg, S., "Meromorphic families of compact operators," Arch. Rat. Mech. Anal., Vol. 31, 372-379, 1968.
doi:10.1007/BF00251419

49. Pearson, L. W., "Evidence that bears on the left half plane asymptotic behavior of the sem expansion of surface currents," Electromagnetics, Vol. 1, 395-402, 1981.
doi:10.1080/02726348108915144

50. Morgan, M., "Singularity expansion representations of fields and currents in transient scattering," IEEE Transactions on Antennas and Propagation, Vol. 32, 466-472, May 1984.
doi:10.1109/TAP.1984.1143350

51. Heyman, E. and L. Felsen, "A wavefront interpretation of the singularity expansion method," IEEE Transactions on Antennas and Propagation, 706-718, July 1985.

52. Richards, M., "Sem representation of the early and late time fields scattered from wire targets," IEEE Transactions on Antennas and Propagation, Vol. 42, 564-566, April 1994.

53. Fleming, R. J., "A transfer function estimation method integrated into supernec for the approximation of the wideband electromagnetic response of complex structures,", Master's thesis, University of Witwatersrand, Johannesburg, South Africa, May 2003.

54. Brittingham, J., E. Miller, and J. Willows, "Pole extraction from real-frequency information," Proceedings of the IEEE, Vol. 68, 263-273, February 1980.
doi:10.1109/PROC.1980.11621

55. Burke, G., E. Miller, S. Chakrabati, and K. Demarest, "Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Magn., Vol. 25, 2807-2809, July 1989.

56. Householder, A., "On prony's method of fitting exponential decay curves and multiplehit survival curves ,", Technical Report ORNL-455, Oak Ridge National Laboratory, Oak Ridge, TN, 1950.

57. Rahman, M. and K. Yu, "Total least squares approach for frequency estimation using linear prediction," IEEE Transactions Acoustics, Speech and Signal Processing, Vol. 35, 1440-1454, October 1987.
doi:10.1109/TASSP.1987.1165059

58. Hua, Y. and T. Sarkar, "On svd for estimating generalized eigenvalues of singular matrix pencil in noise," IEEE Transactions Signal Processing, Vol. 39, 892-900, April 1991.

59. Tesche, F. M., "On the analysis of scattering and antenna problems using the singularity expansion technique," IEEE Transactions on Antennas and Propagation, Vol. 21, 53-62, January 1973.
doi:10.1109/TAP.1973.1140398

60. Baum, C. E., "On the singularity expansion method for the case of first order poles," Interaction Note 129, 1972.