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Abstract—It is demonstrated that there is a common theoretical
basis for the Singularity Expansion Method (SEM) and stabilized,
preconditioned electric field and magnetic field integral equations
(EFIE, MFIE) defining radiation and scattering from a closed perfect
electric conductor in a homogeneous medium.

An operator relation termed the Calderon preconditioner links
the MFIE and EFIE, based on the fundamental Stratton-Chu integral
representations for the problem geometry. This preconditioner is
known to stabilize the ill-posed first kind EFIE, yielding the Modified
EFIE (MEFIE). The same preconditioner has been applied to the
weakly singular MFIE kernel, giving a Modified MFIE (MMFIE), the
equation then being solved using the Fredholm determinant theory.
Since this analytical integral theory is the foundation of the SEM,
it follows that the Calderon preconditioner enables stabilized and
common SEM representations to be defined for both the MEFIE and
MMFIE.

For a finite-sized object admitting only pole singularities, the
solution of the preconditioned EFIE and MFIE is equivalent to the
frequency-domain SEM solution. The common SEM representation
differs only in the coupling coefficient terms. Coupling coefficients for
the MFIE are known, however, explicit formulations for the EFIE, and
the modified coupling coefficients for the MEFIE and MMFIE are new
contributions.
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1. INTRODUCTION

The Singularity Expansion Method (SEM) has been the subject
of more than 100 papers since it’s first exposure in the literature
in the early 1970s. It is based on the analytic properties of the
electromagnetic response as a function of the two-sided Laplace
transform variable s, complex frequency. Singularities of the Laplace
Transform are used to characterize the electromagnetic response of a
structure to incident radiation or a driving source, in both the time
and complex frequency domains [1–3].

A recent resurgence in interest in the SEM has occurred,
reinforcing the popularity of the method for both scattering and
radiation applications. For example, a target discrimination
application requires characterization of perfectly conducting radar
targets in the resonance region, based on natural pole selection
derived from the frequency-domain SEM formulation [4]. Chauveau [5]
developed a unified analysis of antenna radiation for both the
frequency- and time-domain.

The SEM is known to be sensitive to noisy data in its application
to the radar target identification/discrimination problem [4, 6].
Singular value decomposition methods, such as the Matrix Pencil
Method [7] have recently been used to minimize the effects of minor
fluctuations (improve tolerance to noisy data) in excitation or field
strength on the accurate solution of poles and residues. Many recent
papers treat SEM as an abstract procedure for approximation of the
response of objects to incident radiation, in certain cases referring
to Model-Based Parameter Estimation (MBPE), an abstraction of
SEM [8–10]. In many cases, the underlying integral equations may
be responsible for creating the instabilities or sensitive numerical
behavior. Fredholm integral equations of the first kind, such as the
Electric Field Integral Equation (EFIE) are known to be ill-posed
equations, and by definition sensitive to perturbations [11]. The
projection of the infinite-dimensional EFIE into a finite-dimensional
(matrix) subspace by a discretization technique is also problematic. As
the discretization interval reduces, an unbounded increase in condition
number of the matrix can occur [12]. Preconditioning techniques for
boundary integral equations have been developed by several authors,
and allow a stable solution to the integral equation to be sought.

In this paper it is shown that the mathematical foundation of the
Singularity Expansion Method (SEM), which was previously based on
Marins work on the Magnetic Field Integral Equation (MFIE) [13, 14],
can be established from the preconditioned EFIE. The preconditioning
approach used by Adams [15–18] for the MEFIE, and following the
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method of Harrington and Mautz [19] for an MCFIE, is examined
as a viable method for stabilizing the ill-posed nature of the EFIE.
It is demonstrated that the solution of the preconditioned EFIE is
equivalent to the frequency-domain SEM solution, for a finite-sized
object admitting only pole singularities.

The Calderon Projectors, inextricably linking the EFIE and MFIE
formulations, provide a preconditioning relation that when applied
to the EFIE (yielding Adams MEFIE [16]) enable both second kind
Fredholm integral equations to be solved using Carlemans method,
giving a justifiable basis for a valid SEM approximation. Therefore,
a frequency domain solution/characterization of the electromagnetic
response of a structure is justified when approximated by an SEM
pole-residue form. Section 4 explores the preconditioning of the EFIE
and Section 5 the application to the solution of the boundary integral
equations. Common representations are considered in Section 6,
leading to the abstract time- and frequency domain SEM expansions
and the MBPE form. The explicit formulation of coupling coefficients
for the 4 cases of the EFIE, MFIE, MMFIE and MEFIE are also given
in Section 6, with detailed derivations performed in the Appendix.

2. BOUNDARY INTEGRAL EQUATION
FORMULATIONS

Consider a perfectly conducting closed body of arbitrary shape and
finite extent, with surface S, embedded in a homogeneous medium. We
use the Stratton-Chu representation, a direct approach to the solution
of the inhomogeneous vector wave equation based on application of the
2nd vector Green’s theorem.

The total electric field in the space D+, external to surface S is
E(r) = Ei(r) + ES(r), r ∈ D+. For notational ease, we use E− ≡ Ei

and E+ ≡ ES for certain combined forms. Similarly, for magnetic
field H(r). For Hölder-continuous n · E±, and tangential derivatives
of n × E± that are Hölder continuous on S (a condition stronger than
mere continuity), where n ≡ n(r) is the outward-directed normal at r,
in the limit r → S± we write the Stratton-Chu representation

−
∫

S

{
iωμg(r, r′)[n(r′) × H(r′)] + ∇′g(r, r′)[n(r′)·E(r′)]

− ∇′g(r, r′) × [n(r′) × E(r′)]
}

ds′ = E(r) − 1
2
Ei(r) (1)

where −
∫

denotes a Cauchy principal value integral. Hölder continuity
imposes smoothness conditions on the problem that may be limiting
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in certain engineering applications. The scalar free-space Green’s
function is defined as g(r, r′) = exp (ik |r − r′|)/4π |r − r′|. For the
homogenous medium the wavenumber is k = ω(με)1/2, where μ is the
permeability and ε the permittivity of the medium. Characteristic
impedance, Z = 1/Y =

√
μ/ε. r and r′ are position vectors,

at source and field points, respectively. Following [20], note that
E(r′) = (iZ/k)[∇′ × H(r′)] and the identity n(r′) · [∇ × H(r′)] =
−∇′

t · [n(r′) × H(r′)]. ∇′
t denotes the surface nabla operator with

respect to source coordinates r′. Applying the tangential electric field
boundary conditions for a perfect conductor, n × E = 0, expression
(1) reduced to Maues form [21], is the Electric Field Integral Equation
(EFIE),

(iωμ)n(r)−
∫

S

{
g(r, r′)[n(r′)×H(r′)]− 1

k2
∇′g(r, r′)∇′

t · [n(r′)×H(r′)]

}
ds′

= −n(r) × Ei(r) (2)

Similarly, following Stratton-Chu for deriving the magnetic field
equivalent,∫

S

{
− iωεg(r, r′)[n(r′)×E(r′)]+

iωε

k2
∇′g(r, r′)[n · H(r′)]

−∇′g(r, r′)×[n(r′) × H(r′)]

}
ds′ = H(r) − 1

2
Hi(r) (3)

Applying Maxwells equations and the surface Nabla operator as above,
Maues form of the Magnetic Field Integral Equation follows

−n(r)×
∫

S
∇′g(r, r′)×[n(r′) × H(r′)]ds′=

1
2
n(r) × H(r) − n(r) × Hi(r)

(4)

For a perfect electric conductor, operator representations in terms of
unknown tangential surface current J(r) = [Zn(r) × H(r)] of the
integral equations (2) and (4) can be used (in shorthand notation)
[16, 22],

TJ = −n × Ei = Mi (5)(
1
2

I + K

)
J = Zn × Hi = Ji (6)

where Z is the intrinsic impedance and I the identity operator. Using
an indirect (layer ansatz or source) approach [21], we can show that
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an equivalent MFIE can be written, namely(
1
2
I − K

)
J = Mi (7)

Hsiao et al. [22] compiled tangential representations of (1) and (3) in
matrix form as(

I/2 ∓ K ±T
∓T I/2 ∓ K

) (
n × E±

Zn × H±

)
=

(
n × E±

Zn × H±

)
(8)

whereby the matrix term on the left, the Calderon projector, projects
the tangential components of the boundary values of the interior and
exterior solutions onto themselves. Through a series of algebraic
manipulations, following Hsiao et al. [21],

∓
(

I/4 − K2 + T 2 (KT + TK)
−(TK + KT ) I/4 − K2 + T 2

) (
J
M

)
=

(
0
0

)
(9)

For a zero coefficient matrix, two operator relations follow,

TK = −KT (10)

and

1
4

I − K2 = −T 2 (11)

which we term the Calderon preconditioning relation. We elaborate
on its application in Sections 4 and 5.

It is well-known that operator K : L2(S) → L2(S) in (6) is
compact [22, p. 346], and hence bounded [23, p. 140]. Since KK∗ �=
K∗K, thanks to the exp(ik|r − r′|)/(4π|r − r′|) term in the scalar
free space Green’s function g(r, r′), operator K is also nonselfadjoint
and nonnormal. The identity operator in (6) is bounded, but not
compact. The relevance of compact operators is that they have useful
properties in the “forward direction”, but are problematic in the
“reverse direction”. The inverse of a compact and invertible operator
is unbounded. The compact-plus-identity operator, like (6), behaves
well due to the noncompact identity operator.

The (complete) Hilbert space of Lebesgue-square-integrable
functions, L2(S) in S ⊂ R

2, is the appropriate function space for
this application. Therefore, Ji ∈ L2(S) and the MFIE domain is
DK = {J : J(r), KJ(r) ∈ L2(S), r �= r′}.

The Cauchy singular integral in the EFIE is more difficult to
characterize in function space. Per Dolph [24], integral T : C1+λ(S) →
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C1+λ(S) if S ∈ C2, where C1+λ is the space of continuous functions
with continuous first derivative, i.e., Hölder continuous with exponent
λ. C2 is the space of twice continuously differentiable functions.
Since not every bounded sequence will converge in C1+λ(S), T is not
compact. This can be useful; if T is invertible, it has a bounded
inverse. However, as Dolph noted, regularization is required before the
Fredholm Alternative can be invoked to establish uniqueness. Since
T is not bounded from below, the inverse is also not continuous; as
Mi varies, T−1Mi does not vary continuously. This problem of ill-
posedness is addressed in Section 4.

In the sections to follow, it will be shown that the Calderon
preconditioner converts the EFIE to a second kind equation in K2

(or T 2) which operates on L2(S). As discussed above, the resulting
compact-plus-identity operator behaves well in both forward and
reverse directions.

3. SINGULARITY EXPANSION METHOD

The SEM method, first presented by Baum [1], found its origins
in two places, the theoretical analyses of canonical problems to
determine natural oscillations [25–28] and experimental observations
of induced currents and scattered fields seemingly describable by
exponentially damped sinusoidal oscillations [29, 30]. Michalski [31]
compiled a comprehensive bibliography of the SEM literature through
1981. As noted in Section 1, there continues to be interest in the
application of SEM to target identification, discrimination, wideband
antenna characterization, transient analysis [32] and transfer function
estimation [8].

The SEM applies to fields, as well as current and charge densities
on objects, as this body of literature has proven. In symmetric
product notation, a frequency domain representation of the integral
equation (6) for an excitation I(r, s) is

〈Γ(r, r′; sα);J(r′, s)〉 = I(r, s) (12)

where Γ(r, r′; sα) is the kernel of the integral equation, evaluated at
s = sα. SEM builds on the concept of natural frequencies and natural
modes corresponding to “free oscillations.” The nontrivial solutions
of the homogeneous equations for the scattering problem, defined in
terms of an impedance (dyadic) operator, Γ(r, r′; sα) are natural and
coupling mode vectors, Nα,Cα.

〈Γ(r, r′; sα);Nα(r′)〉 = 0 (13)
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and

〈Cα(r); Γ(r, r′; sα)〉 = 0 (14)

These relations exist at a specific frequency, sα, termed the natural
frequency. Marin [3, 13] proved for the MFIE case that the inverse
operator is analytic, except for a finite number of poles, permitting a
pole-residue approximation. Using the Mittag-Leffler representation,
Taylor and Laurent series expansions of (12) near s = sα yield the
frequency domain SEM representation.

J(r, s) =
∑
α

Ψα(s)Nα(r)
(s − sα)mα

+ Jnp (r, s) (15)

The series term consists of pole singularities, of multiplicity mα

(mα = 1 for the PEC case) and corresponding residue terms.
Ψα(s) is the coupling coefficient, defining the strength of the natural
oscillation in terms of the object and incident wave parameters. The
second term, Jnp (r, s), is the nonpole term, typically corresponding
to the entire function contribution arising from the Mittag-Leffler
expansion. Time domain solutions clearly follow, with appropriate
inverse Laplace/Fourier Transformations enabling transient solutions
to be determined. The concept of series expansions of singularities is
elementary; of more substance is the underlying theory that motivates
the validity of these expansions.

There is a significant body of literature dedicated to SEM analysis,
with the basic foundations presented by Baum [2]; the analyses
of Marin [13, 14] provided the key underlying mathematical theory.
Dolph [24] observed that many of the papers on SEM were difficult to
interpret mathematically, since neither the properties of the integral
operators, nor the space in which solutions are sought were specified.
While this observation was made more than 30 years ago, the SEM is
still applied in abstract form by many authors. The use of the EFIE
in particular admits room for further analysis.

4. PRECONDITIONING EFIE

The first kind integral equation is known to be be ill-posed, in the
sense of Hadamard. Formally, for function spaces X and Y , Kress [11]
defines a well-posed problem for integral equation LI = e: if for any
e ∈ Y , the problem has a unique solution I ∈ X, such that

‖I‖X ≤ C ‖e‖Y (16)
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for a constant C > 0. This implies that small variations in e result
in limited excursions in I. By (16),

∥∥L−1e
∥∥ ≤ C ‖e‖, and ‖LI‖ ≥

(1/C) ‖I‖ for all I ∈ X; we can conclude that L is bounded below.
As a result, it possesses a continuous (bounded) inverse that depends
continuously on e. As established in the prior section, the second kind
compact-plus-identity MFIE operator has a bounded inverse and is
therefore well-posed. The EFIE, on the other hand is not. This fact has
been exploited in several different approaches, including the Method
of Analytical Regularization (MAR) [33], also known as Nosich’ semi-
inversion technique [34], and the method of Burton and Miller [35]. The
latter is particular interesting, being applied to the scalar scattering
problem and Singular Function Expansions [36, 37].

Adams [16] and Hsiao [21] presented insightful analyses into the ill-
posedness of the EFIE operator, in contrast to its MFIE counterpart.
The EFIE imposes a boundary condition on magnetic currents in terms
of electric sources, an impedance-type mapping, i.e., operation TJ
maps the electric current J into a magnetic current M. The MFIE
maps electric current into electric current. Recent developments [15–
18] have shown that the impedance-type mapping effected by T can
be stabilized by using an admittance pre-multiplier, a preconditioning
approach. The net effect is that the preconditioning causes the first
kind operator T to be converted to a second kind operator, mapping
electric current into electric current, as is the case with the MFIE.

Pre-multiplying the EFIE (5) by T yields T 2J = TMi. It has been
demonstrated [15] that the application of the composite operator T 2, as
opposed to “just” T , provides a well-posed formulation of the EFIE,
a result of the smoothing action of the integral operator. Operator
T 2 maps the ill-posed EFIE into a second-kind form, giving Adams’
MEFIE (Modified EFIE) [16]. To differentiate various preconditioners,
we use the term “Calderon Preconditioner” in this text, in reference
to its origin.

The numerical implementation of MEFIE for certain canonical
problems and details of the discretization of the operator product,
the T 2 operator, based on Helmholtz decompositions are considered
in [16, 18, 38, 39]. For the Helmholtz decomposition of the EFIE
operator as follows:

T = Ts + Th (17)

TsJ = iωμ−
∫

g(r, r′)J(r′)ds′ (18)

ThJ = − iωμ

k2
−
∫

∇′g(r, r′)∇′
t · J(r′)ds′ (19)

Cauchy singular operator T is decomposed into Ts, a smoothing
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operator and Th, a hypersingular operator (given the differential
operator acting on the singular Green’s function). The Helmholtz
decomposition of T 2 as (TsTs + TsTh + ThTs + ThTh) can be used to
understand how discretization can maintain stabilization properties.
The square of the hypersingular operator Th needs to be removed, i.e.,
T 2

h = 0 to ensure a stable (well-conditioned) solution. The composite
operators that remain have been demonstrated to smooth the resulting
second kind equation.

For Method of Moments discretization, the projection of operator
T 2 into a finite dimensional subspace can result in T 2

h �= 0.
In [18], subspace mapping considerations were used to construct
a discretization using low-order divergence conforming RWG (Rao-
Wilton-Glisson) basis elements that maintained a zero hypersingular-
squared operator. The resulting solution requires 7 matrices to be
used, and therefore carries significant computational burden.

5. SOLVING MFIE AND EFIE

Marin presented a comprehensive analysis of the solution to the
MFIE based on the Fredholm Determinant theory and Carleman’s
method [13, 14, 40]. This work is recognized to have given the SEM
a stronger mathematical foundation. The method is reviewed in this
section and extended to the EFIE case as well, by first preconditioning
the EFIE per operator relation (11), yielding the MEFIE. It will also
be revealed that Marin’s approach includes a preconditioning of the
MFIE, for different reasons than those of the EFIE. We term this form
the Modified MFIE (MMFIE).

Through the identical Calderon preconditioner, both the (M)EFIE
and (M)MFIE can be shown to be stable integral equations with
solutions that can be approximated by a Singularity Expansion Method
(SEM), giving series of poles and residues in the frequency domain form
and series of damped exponentials in time domain form.

As discussed in Section 2, the compact-plus-identify MFIE has
desirable properties, namely being well-posed with a bounded inverse,
i.e., readily solvable. To apply Carleman’s method, based on the
Fredholm Determinant theory, an additional property is required of
the operator, namely to be Hilbert-Schmidt. While the compact-plus-
identity operator equation is readily solvable, this additional property
is needed to ensure that the recursive series expansions of the Fredholm
Determinant method apply and that the series converges. For integral
operator K : L2(S) → L2(S) to be Hilbert-Schmidt it requires a finite
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norm-squared, defined by

‖K‖2 ≤
∫

S

∫
S
|k(x,y)|2 dsxdsy < ∞ (20)

where surface S ⊂ R
2, and k(x,y) is the integral kernel corresponding

to operator K. While K in the MFIE is bounded and compact, it does
not satisfy (20) and therefore is not Hilbert-Schmidt [41, pp. 162–165];
it can be shown that operator K2 and T 2 are. It is noteworthy that
Hilbert-Schmidt operators are compact, but that the reverse does not
apply [42].

Multiplying both sides of (6) by (1/2 I−K), the tangential current
density is the solution of the equation

(−1/4I + K2)J = [(−1/2I + K)]Ji (21)

which we refer to as the Modified MFIE (MMFIE). Multiplying both
sides of (5) by T and applying (11), we have the Modified EFIE
(MEFIE)

(−1/4I + K2)J = TMi (22)

The solutions of the MMFIE and MEFIE are therefore

J =
(
−1/4 I + K2

)−1 [
(−1/2 I + K)Ji

]
(23)

and J =
(
−1/4 I + K2

)−1 [
TMi

]
(24)

We briefly (and formally) explore the Fredholm approach
to solving these integral equations, requiring similar recursive
determinant terms. Consider a one-dimensional (in space) “structure”
in some medium such that S = [u1, un] with n equispaced subdivisions.
There is a scalar current distribution on S written in matrix
notation x = [x(u1), x(u2), . . . x(un)] and a modified excitation y =
[y(u1), y(u2), . . . y(un)]. We have already established that the same
integral kernels are used for both MMFIE and MEFIE and use a
common matrix approximation Z = 4K2. Further, the kernel is an
n × n matrix Z = Z(ui, uj) with i, j = 1, 2, . . . n. The differential
length in our integral equation is approximated by the subdivision
of width δn, The infinite-dimensional MxFIE integral equation (c.f.
Eq. (21) or (22)) is therefore approximated by the finite-dimensional
matrix equation

x = y + λδnZx (25)

which has a unique solution if determinant

dn(λ) = det(I − λδnZ) �= 0 (26)
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Consistent with Cramer’s theorem, this solution is

x =
1

dn(λ)
adj (I − λδnZ)y (27)

The determinant can be expanded in polynomial terms, which in the
limit as n → ∞ is

d(λ) = lim
n→∞

dn(λ) = 1 − λ

∫
S

Z(u, u)du

+
λ2

2!

∫
S

∫
S

∣∣∣∣Z(u, u) Z(u, v)
Z(v, u) Z(v, v)

∣∣∣∣ du dv

−λ3

3!

∫
S

∫
S

∫
S

∣∣∣∣∣
Z(u, u) Z(u, v) Z(u, w)
Z(v, u) Z(v, v) Z(v, w)
Z(w, u) Z(w, v) Z(w, w)

∣∣∣∣∣ du dv dw + . . . (28)

The adjoint is determined as usual by using the minors of the matrix.
We can therefore derive a similar expression for Dλ(s, t). For this one-
dimensional example, the solution in the limit is [43, pp. 67–68]

x(u)=y(u) + λ

∫
S
Hλ(u, v)y(v)dv = y(u) +

λ

d(λ)

∫
S
Dλ(u, v)y(v)dv

(29)

If d(λ) �= 0, λ is a regular value of Z(u, v) and the resolvent Hλ(u, v)
is given by:

Hλ(u, v) =
Dλ(u, v)

d(λ)
(30)

The successive approximation method used in the determinant theory
shows that the solution can be written

x(u) = y(u) +
∞∑

m=1

λm

∫
S

Zm(u, v)y(v)dv (31)

where Zm(u, v) is defined recursively,

Zm(u, v) =
∫

S
Z(u, w)Zm−1(w, v)dw (32)

For the second kind integral in (25), it is the integral kernel operator
Z that needs to be Hilbert-Schmidt. The identity operator does not
contribute to the series convergence, instead giving the first term on the
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right hand side of (31). Therefore, the identity-plus-compact operator
solved using the determinant theory requires the compact operator be
Hilbert-Schmidt to ensure convergence of the solution.

By the Fredholm Determinant theory and Carleman’s method, we
can define the modified Fredholm determinant, δ(λ), and the modified
first Fredholm minor of Z(u, v), denoted Dλ(u, v)

d(λ) =
∞∑

n=0

dnλn (33)

Dλ(u, v) =
∞∑

n=0

Dn(u, v)λn (34)

Smithies [43, pp. 65–105] showed that the series were convergent for
all complex λ; Carleman’s contribution was in proving that these
expansions applied under the sole assumption that the operator Z was
Hilbert-Schmidt. We can extend this one-dimensional approach to
the solution of the general MEFIE and MMFIE in terms of modified
Fredholm minors and determinants; we now consider functions in
L2(S) where S is now a surface in a three-dimensional space. The
validity of this extension from a scalar case to a higher-dimensional
function space was established by Marin in the appendix of his paper,
based on a technique developed by Goursat [44, pp. 152–165]. For the
MMFIE the solution is written in the form

J =
(

I +
D

d

) [(
−1

2
I + K

)
Ji

]
(35)

where D ≡ D(r, r′; s) is the modified first Fredholm minor and d ≡ d(s)
the modified Fredholm determinant with complex frequency, s and we
set λ = 1. The tangential current density solution for the MEFIE can
be written in the same way as earlier,

J =
(

I +
D

d

) [
TMi

]
(36)

Clearly, the (−1/2I + K) preconditioner applied to the MFIE can be
interpreted as the Calderon preconditioner (−1/4I + K2) applied to
a modified excitation term, namely (−1/2I + K)Ji versus Ji. The
Calderon preconditioner, creating the MEFIE and MMFIE forms,
establishes a common mathematical basis; following the approach of
Marin, this leads to an SEM formulation, as demonstrated in the
next section. We also examine the details of the Fredholm minor and
determinant terms for both MEFIE and MMFIE forms, leading to this
result.



Progress In Electromagnetics Research M, Vol. 5, 2008 123

6. THE COMMON SEM SOLUTION

The resolvent operator d(s)−1D(r, r′; s) is common to both MMFIE
and MEFIE with recursive Fredholm minor and determinant terms
having been generated by recursive integrals using the analytical
Fredholm integral theory (and forming a Neumann series). Formally,
the modified determinant and minor are [14, 43, pp. 71–101, and
45, pp. 257–286]

d(s) =
∞∑

n=0

dn(s) (37)

D(r, r′; s) =
∞∑

n=0

Dn(r, r′; s) (38)

where

dn(s)=
(−1)n

n!

∫
Sτn

. . .

∫
Sτ1

∣∣∣∣∣∣∣
0 Z(τ1, τ2) . . . Z(τ1, τn)

Z(τ2, τ1) 0 . . . Z(τ2, τn)
. . . . . . . . . . . .

Z(τn, τ1) Z(τn, τ2) . . . 0

∣∣∣∣∣∣∣dτ1dτ2 . . . dτn

(39)

and

Dn(r, r′; s)=
(−1)n

n!

∫
Sτn

. . .

∫
Sτ1

∣∣∣∣∣∣∣
Z(s, t) Z(s, τ1) . . . Z(s, τn)
Z(τ1, t) 0 . . . Z(τ1, τn)

. . . . . . . . . . . .
Z(τn, t) Z(τn, u1) . . . 0

∣∣∣∣∣∣∣dτ1dτ2 . . . dτn

(40)

d0(s) = 1 and D0(r, r′; s) = 4K2(r, r′; s), where

4K2J = 4
∫

S

∫
S

K(r, r′′; s)K(r′′, r′; s) · J(r′)ds′′ds′ (41)

with

KJ = −n(r)
4π

×
∫

S
∇′g(r, r′) × Jds′ (42)

We exclude the singular point at r = r′. These formal representations
are of limited value in their application to engineering problems,
however, can be suitably approximated due to their interesting
properties as functions in the complex plane.
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The analytic Fredholm theorem states that for the family of
compact operators A(s) on an open, connected subset of the complex
plane S; either (I − A(s)) is nowhere invertible in S or (I − A(s))−1

is meromorphic in S [24, 46]. In a finite region of the complex plane,
there are a finite number of poles. D(r, r′; s) is an operator-valued
analytic function of s, and d(s) an analytic function of s; both are
convergent for all s [43, pp. 30–31]. It follows that (−1/4I + K2)−1

is an analytic operator valued function, except at the zeros of d(s),
where it has poles. The Mittag-Leffler theorem asks the question: is
a function uniquely specified by its singular points and the coefficients
of its Laurent series? The theorem statement is essentially that one
can always construct a meromorphic function f(z) with principal parts
Gn(z) of the Laurent expansion at an infinite sequence of prescribed
poles provided that the sequence of poles approaches infinity [47]. Any
such function can be written as

f(z) = φ(z) +
∞∑
1

(Gn(z) + Qn(z)) (43)

where φ(z) is an entire function and {Qn(z)} are polynomials
that guarantee the convergence of the expansion. For the
scattering problem, the entire function contributions are required to
ensure convergence of the series for the early time/high-frequency
components. This accounts for transient effects during the interval
in which the object is responding to the leading edge of an incident
field traversing it. Baum grouped the polynomial summands and φ(z)
together into a single entire function term, appended to the SEM
pole series. Pearson raised concerns regarding convergence due to
separating polynomial terms from their respective poles [47], making
this approach questionable for the early time case. Two classes of
coefficients for accommodating the entire function are detailed below.

As demonstrated in the Appendix, the class 2 coupling coefficients
for both the MFIE and EFIE forms can be derived by Laurent and
Taylor series expansions around s = sn. The tangential current
distribution therefore follows for these two cases as

Je,m(r, s) =
∑
α

[
Ψe,m

α (s)Ne,m
α (r)

(s − sα)mα
+Je,m

α (r, s)
]
+Je,m

np (r, s)(44)

with Ψe,m
α (s) =

〈Ce,m
α (r); Ie,m(r, s)〉

〈Ce,m
α (r); Γe,m

1α
(r, r′);Ne,m

α (r′)〉 (45)

where we use the e, m superscript to denote the EFIE and MFIE forms,
respectively. Excitation terms are given by Ie(r, s) = Mi(r, s) and
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Im(r, s) = Ji(r, s). Γe,m
1α

(r, r′) is the derivative in s of the applicable
kernel (c.f. Eqs. (2) and (4)). The coupling coefficients are stated
explicitly in (A19) through (A23). Comparing to (43), the Je,m

α (r, s)
term is the polynomial entire function ensuring convergence of the
series, and Je,m

np (r, s) corresponding to entire function φ(z).
The solution of the MMFIE coincides with the solution of the

MFIE for all values of s for which the inverse operators exist. By the
analytic Fredholm theorem; (1/2I − K)−1 and (−1/4I + K2)−1 are
analytic operator-valued functions of s, except at finite s = sn where
they have the same poles. The coupling coefficients, as determined
by Marin and Baum, are based on the “original” integral equation,
namely the MFIE. It’s denominator is a function of the MFIE kernel.
The EFIE coupling coefficient, Ψe

α(s) in (45), still contains a singular
integral and may possibly present numerical instability. Modified
coupling coefficients can be derived that are based on series expansions
of the modified kernels (after application of the preconditioner).

Let P (r, r′; s) ≡ [−1/4I + K2](r, r′; s) denote the preconditioning
operator. It’s derivative with respect to s, evaluated at sα is

P1α(r, r′) =
∂

∂s
P (r, r′; s)

∣∣∣∣
s=sα

(46)

As detailed in the Appendix, the class 2 modified coupling coefficients
for the MMFIE and MEFIE are

Φm
α (s) =

〈Uα(r); [−1/2I + K]α(r, r′);Ji
α(r, s)〉

〈Uα(r);P1α(r, r′);Vα(r′)〉 (47)

Φe
α(s) =

〈Uα(r);Tα(r, r′);Mi
α(r, s)〉

〈Uα(r);P1α(r, r′);Vα(r′)〉 (48)

where [−1/2I + K]α(r, r′) ≡ [−1/2I + K](r, r′; s)
∣∣
s=sα

and Tα(r, r′) =
T (r, r′; s)

∣∣
s=sα

. As demonstrated in the Appendix, the natural modes
and coupling vectors are derived from the homogeneous solution of the
integral equations (c.f. (A25) and (A26)) and their adjoints at s = sα.
Since the LHS of both of these equations is the same, the natural modes
of the MEFIE and MMFIE are equal, denoted Uα(s). The same applies
to the coupling vectors, Vα(s). This differs from the EFIE and MFIE
coupling coefficients where natural mode and coupling vectors are not
common (the superscripts in (45) denote the different term for EFIE
and MFIE case).

For the class 2 coefficients in (45), the frequency dependence of the
Ψe,m

α (s) comes from Ie,m(r, s). In the time domain, this corresponds
to smoothing out the rise time of the α-th pole by convolution [3]. For
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incident radiation or an applied source, Baum introduced the “turn-
on time” t′ at which the pole series is allowed to begin contributing
to the representation of the surface current induced on a scattering
object. If the turn-on time is chosen later than the time at which
the actual response begins, then the entire function contribution must
“fill the gap” between the time that the response begins and the time
that the pole series contributions are allowed to contribute to the
representation [3, 47]. The EFIE and MFIE class 1 coefficient is thus

Ψe,m
α (sα) =

〈Ce,m
α (r); Ie,m

0α
(r)〉

〈Ce,m
α (r); Γe,m

1α
(r, r′);Ne,m

α (r)〉e
(sα−s)t′ (49)

where the current term Ie,m
0α

(r) is evaluated at the pole. The same
expression holds for the modified coupling coefficients, Φe,m

α (sα).
Various asymptotic techniques have been suggested for handling the
early time contributions, including physical optics methods [48] and
Geometrical Theory of Diffraction [49]. The entire function is not
needed for the late-time description due to the early time effects
having subsided. Class 2 coupling coefficients are more complicated
to calculate than class 1 coefficients, however give smoother early-time
results for a finite number of poles when included in the numerical
summation, due to the smoother rise of resulting pole terms in the
time domain [50].

Application of Laplace or Fourier Transformation, as required,
gives the late-time form equivalent of (44) [3],

J(r, t) = u(t − t′)
∑
α

Ψe,m
α (sα)Ne,m

α (r)esαt (50)

where u(t − t′) is a Heaviside unit step function at t = t′.
Since operator (−1/4I + K2) applies to both the MMFIE and

MEFIE case, with different modified excitation terms, the only
difference between the MEFIE-based solution and the MMFIE-based
one is the coupling coefficient, Ψe,m

α (sα). The solution is stable, in the
sense of Hadamard, with the ill-posed first kind EFIE removed by the
Calderon preconditioning, and both MEFIE and MMFIE forms having
bounded norm-square on L2.

In many applications, an abstracted form is used, where the
numerator is denoted R(sα) such that

J(r, s) =
∑
α

R(sα)
(s − sα)

=
b0 + b1s + . . . + bnsn

a0 + a1s + . . . + adsd
(51)

Applications in the frequency domain employ this reduced order model
to approximate some system response, or transfer function by poles and
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residues (numerator and denominator coefficients, bk, ak). The order
of the rational function polynomials, or the commensurate number
of poles and residues, are examined in other documents [9, 51, 52].
Model-based parameter estimation techniques arise from this abstract
form [53].

Most recent (last 15 years) applications of the SEM do not
typically calculate coupling coefficients in terms of the complex
underlying recursive determinant integrals. Instead, the abstracted
form is used, and poles and residues found using standard techniques
of Prony, Cauchy and Newton-Raphson. Prony’s methods, in the
time or frequency domain are most popular. Sensitivity to input
time or frequency samples have been handled by the modified LS-
Prony [54] and TLS-Prony [55] methods, and other techniques based
on the use of the singular value decomposition [56]. The Matrix Pencil
Method (MPM) [7] has also been used for applications in low signal-to-
noise ratio environments. Iterative search methods based on Newton-
Raphson methods are also applied [57].

7. CONCLUSION

The integral equations for radiation and scattering from a perfectly
conducting object in a homogeneous medium were stated based
on the Stratton-Chu representations as EFIE and MFIE operator
representations. The Calderon projectors were used to expose the
linkage between the operator EFIE and MFIE, through operator
relation (1/4I−K2) = −T 2. When applied to the EFIE, giving Adams’
MEFIE, this operator preconditions the ill-posed first kind equation,
mapping it to a second kind form. It is also the same operator applied
by Marin in the mathematical foundations for the SEM.

Tangential current density, the solution for both MEFIE and
MMFIE, is defined by the Calderon preconditioner ((−1/4I + K2)−1)
acting on a modified incident excitation term. The resolvent operators
for the MMFIE and MEFIE are identical, with modified Fredholm
minors and determinants specified in terms of recursive integral
representations. The second kind equations can be solved using
Carleman’s method (following Marin) leading to a SEM formulation.
A common SEM form was shown to exist, with MEFIE- and MMFIE-
specific coupling coefficients.

Through this “preconditioning” relation, both the MEFIE and
MMFIE can be shown to be stable integral equations with solutions
that can be approximated by a Singularity Expansion Method (SEM),
giving series of poles and residues in the frequency domain form and
series of damped exponentials in time domain form. Abstract time and
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frequency domain methods based on Prony’s method or Model-Based
Parameter Estimation (MBPE) are therefore valid approaches.

A common representation was given for both EFIE and MFIE
coupling coefficients, and the more complex modified coupling
coefficients for the MMFIE and MEFIE defined. An analysis
and comparison of the various coupling coefficients and the trades
inherent in the additional complexity versus the improved numerical
conditioning would be most interesting. Additional work in this
area would be beneficial in answering questions about validity of
EFIE coupling coefficients, as well as practical application of modified
coupling coefficients.

APPENDIX A.

In this Appendix, a generic form of coupling coefficient will be
derived that is consistent with the MFIE approach in the literature
today. Thereafter, forms specific to the EFIE will be defined, and a
new modified coupling coefficient applicable to MEFIE and MMFIE
derived.

The starting point for these derivations is the homogeneous
equations for the scattering problem, defined in terms of an impedance
operator, Γ(r, r′; s) and natural mode and coupling vectors, Nα(r) and
Cα(r).

〈Γ(r, r′; sα);Nα(r′)〉 = 0 (A1)

and

〈Cα(r); Γ(r, r′; sα)〉 = 0 (A2)

where Γ(r, r′; sα) is the kernel of the either the EFIE or MFIE, defined
in Section 2, evaluated at s = sα. For an excitation I(r, s), the
inhomogeneous equation is

〈Γ(r, r′; s);J(r′, s)〉 = I(r, s) (A3)

Expanding this integral equation near s = sα using the Taylor series
formula,

Γ(r, r′; s) =
∞∑

m=0

(s − sα)m × 1
m!

∂m

∂sm
Γ(r, r′; s)

∣∣∣∣∣
s=sα

(A4)

I(r, s) =
∞∑

m=0

(s − sα)m × 1
m!

∂m

∂sm
I(r, s)

∣∣∣∣∣
s=sα

(A5)
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Let

Γmα(r, r′) =
1
m!

∂m

∂sm
Γ(r, r′; s)

∣∣∣∣
s=sα

(A6)

and Imα(r) =
1
m!

∂m

∂sm
I(r, s)

∣∣∣∣
s=sα

(A7)

Assuming that there is a singularity at s = sα, corresponding to a
natural frequency, a Laurent series expansion is required. The general
form, for some z, z0 ∈ C is

f(z) =
∞∑

n=0

an(z − z0)n +
∞∑

n=1

bn

(z − z0)
n (A8)

defined in the immediate neighbourhood of z0, a region of the form
0 < |z − z0| < R, where R ∈ C. Separating the pole in the Mittag-
Leffler series expansion at sα,

J(r, s) =
Ψα(s)Nα(r)
(s − sα)mα

+ Jα(r, s) (A9)

The second term, Jα(r, s), corresponds to the entire function
contribution (c.f. Eq. (44)). Using Baum’s assumptions of a single
pole approximation, mα = 1.

Substituting (A4), (A5) and (A9) into (A3),〈 ∞∑
m=0

(s − sα)m × 1
m!

∂m

∂sm
Γ(r, r′; s)

∣∣∣∣∣
s=sα

;
Ψα(s)Nα(r′)

s − sα
+ J′(r, s)

〉

=
∞∑

m=0

(s − sα)m × 1
m!

∂m

∂sm
I(r, s)

∣∣∣∣∣
s=sα

(A10)

Therefore,〈[
(s−sα)0Γ0α(r, r′)+(s−sα)Γ1α(r, r′)+. . .

]
;
Ψα(s)Nα(r′)

s−sα
+J′(r, s)

〉
= (s − sα)0I0α(r) + (s − sα)I1α(r, r′) + . . . (A11)

Combining terms corresponding to (s − sα)−1,〈
Γ0α(r, r′); Ψα(s)Nα(r′)

〉
= 0 (A12)
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Combining terms in (s − sα)0,

〈Γ1α(r, r′); Ψα(s)Nα(r′)〉 + 〈Γ0α(r, r′);J′(r′, s)〉 = I0α(r) (A13)

Left operating by Cα(r), the second term disappears, since

〈Cα(r); Γ(r, r′; sα)〉 = 0 (A14)
and Γ0α(r, r′) = Γ(r, r′; sα) (A15)

Therefore,

Ψα(sα) =
〈Cα(r); I0α(r)〉

〈Cα(r); Γ1α(r, r′);Nα(r′)〉 (A16)

This defines the coupling coefficient at sα. Following [58], the coupling
coefficient as a function of all s can be calculated using the preceding
method, but not performing the Taylor expansion in (A5). The class
2 coupling coefficient is so defined as

Ψα(s) =
〈Cα(r); I(r, s)〉

〈Cα(r); Γ1α(r, r′);Nα(r′)〉 (A17)

For the MFIE, the natural modes and coupling vectors are Nm
α (r) and

Cm
α (r) and the class 2 coupling coefficient defined by

Ψm
α (s) =

〈Cm
α (r); I(r, s)〉

〈Cm
α (r); Γm

1α(r, r′);Nm
α (r′)〉 (A18)

where the denominator term is given by

〈Cm
α (r); Γm

1α(r, r′);Nm
α (r′)〉=(−4πc)−1

∫
S

∫
S
Cm

α (r) [n(r)

×∇{exp(−snR/c)}×Nm
α (r′)

]
dS′dS (A19)

with R = |r − r′| and the numerator

〈Cm
α (r); I(r, s)〉 =

∫
S
Cm

α (r)I(r, s)dS (A20)

For the EFIE, the coupling coefficient is

Ψe
α(s) =

〈Ce
α(r); I(r, s)〉

〈Ce
α(r); Γe

1α(r, r′);Ne
α(r′)〉 (A21)
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For g(r, r′) = (4πR)−1 exp (−sR/c), we have ∇′g(r, r′) =
g(r, r′) [s/c + 1/R] R̂(r, r′) where unit vector R̂(r, r′) = R(r, r′)/R.
The denominator term is thus

〈Ce
α(r); Γe

1α(r, r′);Ne
α(r′)〉=sαμ

∫
S

∫
S

[
(−4πc)−1 exp (−sαR/c)Ne

α(r′)

+(c2/s2
α)g(r, r′) [sα/c + 1/R] R̂(r, r′)∇′

t · Ne
α(r′)

]
Ce

α(r)dS′dS (A22)

As before, the numerator is

〈Ce
α(r); I(r, s)〉 =

∫
S
Ce

α(r)I(r, s)dS (A23)

The common class 2 coupling coefficient representation is

Ψe,m
α (sα) =

〈Ce,m
α (r); Ie,m(r, s)〉

〈Ce,m
α (r); Γe,m

1α
(r, r′);Ne,m

α (r)〉 (A24)

Following the same method as earlier, modified coupling coefficients
for the MMFIE can be derived,

〈(−1/4I + K2);J〉 = 〈(−1/2I + K);Ji〉 (A25)

and the MEFIE

〈(−1/4I + K2);J〉 = 〈T ;Mi〉 (A26)

Let P (r, r′; s) ≡ (−1/4I + K2)(r, r′; s) denote the preconditioning
operator. It’s derivative with respect to s, evaluated at sα is

P1α =
∂

∂s
P (r, r′; s)

∣∣∣∣
s=sα

(A27)

The natural modes and coupling vectors are derived from the
homogeneous solution of (A25) and (A26) and their adjoints at s = sα.
Since the LHS of both of these equations is the same, the natural modes
of the MEFIE and MMFIE are equal, denoted Uα(s). The same applies
to the coupling vectors, Vα(s). Derived in the same manner as earlier
in this Appendix, the class 2 modified coupling coefficients for the
MMFIE and MEFIE are

Φm
α (s) =

〈Uα(r); [−1/2I + K]α(r, r′);Ji
α(r, s)〉

〈Uα(r);P1α(r, r′);Vα(r′)〉 (A28)

Φe
α(s) =

〈Uα(r);Tα(r, r′);Mi
α(r, s)〉

〈Uα(r);P1α(r, r′);Vα(r′)〉 (A29)
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where [−1/2I + K]α(r, r′) ≡ [−1/2I + K](r, r′; s)
∣∣
s=sα

and Tα(r, r′) =
T (r, r′; s)

∣∣
s=sα

. For the class 2 coefficients in (45), the frequency
dependence of the Ψe,m

α (s) comes from Ie,m(r, s). Discussion of the
application of these modified coupling coefficients is presented in
Section 6.
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