Vol. 5
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-10-27
Applying Critical-Points Method in the Presence of Phase Shift Due to Feed Line
By
Progress In Electromagnetics Research M, Vol. 5, 15-23, 2008
Abstract
The critical-points method is adopted for measuring unloaded Q-factor of microwave resonators in the presence of phase shift caused by the feed line. The result is calculated from four frequencies of three points in the resonator's impedance trace. In fact, the resonator's impedance trace rotates in Smith Chart by the phase shift. If Q-factor were gotten directly from the measured impedance including feed line rather than the equivalent impedance of the resonator without feed line, the performance of measurement will be impaired. To de-embed the phase shift, objective function was introduced to find the proper rotation angle caused by the feed line instead of calibration using extra measurement. Another advantage of the proposed method lies in the fact that no special attention is needed to distinguish magnetic coupling and electric coupling. The effectiveness of the proposed method was demonstrated by one set of simulation data and two measurement examples, namely, a low Q dielectric resonator and a high Q hollow cylindrical cavity.
Citation
Changying Wu, Kai Zhang, Gao Wei, and Jia-Dong Xu, "Applying Critical-Points Method in the Presence of Phase Shift Due to Feed Line," Progress In Electromagnetics Research M, Vol. 5, 15-23, 2008.
doi:10.2528/PIERM08100704
References

1. Kumar, A., S. Sharma, and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204

2. Kajfez, D., S. Chebolu, M. R. Abdul-Gaffoor, and A. A. Kishk, "Uncertainty analysis of the transmission-type measurement of Q-factor," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 3, 367-371, 1999.
doi:10.1109/22.750244

3. Kajfez, D., "Q-factor measurement with a scalar network analyzer," Proc. Inst. Elect. Eng., Vol. 142, No. 5, 369-372, Pt. H, 1995.

4. Kajfez, D. and E. J. Hwan, "Q-factor measurement with network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 7, 666-670, 1984.
doi:10.1109/TMTT.1984.1132751

5. Sun, E. Y. and S. H. Chao, "Unloaded Q measurement --- The critical points method," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1983-1986, 1995.
doi:10.1109/22.402290

6. Wang, P., L. H. Chua, and D. Mirshekar-Syahkal, "Accurate characterization of low-Q microwave resonator using criticalpoints method," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 349-353, 2005.
doi:10.1109/TMTT.2004.839931

7. Chua, L. H. and D. Mirshekar-Syahkal, "Accurate and direct characterization of high-Q microwave resonators using one-port measurement," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 978-985, 2003.
doi:10.1109/TMTT.2003.808711