Vol. 4
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-09-29
Simultaneous Switching Noise Mitigation Capability with Low Parasitic Effect Using Aperiodic High-Impedance Surface Structure
By
Progress In Electromagnetics Research Letters, Vol. 4, 149-158, 2008
Abstract
A novel design with low parasitic effect for eliminating the simultaneous switching noise (SSN) in high-speed circuits is proposed by using the aperiodic high-impedance surface (A-HIS) structure. The A-HIS configuration is proposed in this work, revealing suppression of the SSN from 1.1∼1.85 GHz. It is shown that the HIS structure with aperiodic design, the SSN will be effectively suppressed. The undesired resonances of the proposed A-HIS structure are less than that of the conventional structure below 1 GHz. Less undesired peaks will ensure the electromagnetic interference (EMI) and signal integrity (SI). The measured results show very well compared with the conventional periodical HIS structures. The suppression results of the proposed A-HIS structure is checked by both measurement and simulation results. By using this proposed method, the simplicity of the structure is easier to fabricate as well as to route signal lines with a perfect power/ground planes. In addition, the proposed designs provide excellent SSN suppression and good signal integrity (SI) as the conventional structure.
Citation
Chin-Sheng Chang, Mau-Phon Houng, Ding-Bing Lin, Kuo-Chiang Hung, and I-Tseng Tang, "Simultaneous Switching Noise Mitigation Capability with Low Parasitic Effect Using Aperiodic High-Impedance Surface Structure," Progress In Electromagnetics Research Letters, Vol. 4, 149-158, 2008.
doi:10.2528/PIERL08082902
References

1. Ren, K., C. Y. Wu, and L. C. Zhang, "The restriction on delta-I noise along the power/ground layer in the highspeed digital printed circuit board," Proc. IEEE Int. Electromagn. Compat. Symp., 511-516, Denver, CO, August 1998.

2. Kamgaing, T. and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 1, 21-23, January 2003.
doi:10.1109/LMWC.2002.807713

3. Wu, T. L., S. T. Chen, J. N. Hwang, and Y. H. Lin, "Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 1, 33-45, February 2004.
doi:10.1109/TEMC.2004.823680

4. Archambeault, B., "Analyzing power/ground plane decoupling performance using the partial element equivalent circuit (PEEC) simulation technique ," IEEE International Symposium on Electromagnetic Compatibility Symposium Record Volume Two, 779-784, Washington, D.C., August 21–25, 2000.

5. Archambeault, B., A. E. Ruehli, and , "Analysis of power/groundplane EMI decoupling performance using the partial-element equivalent circuit technique," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, 437-445, November 2001.
doi:10.1109/15.974623

6. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, Vol. 20, No. 6, 819-825, 2006.

7. Hsu, H. J., M. J. Hill, J. Papapolymerou, and R. W. Ziolkowski, "A planar X-band electromagnetic band-gap (EBG) 3-pole filter ," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 7, 255-257, July 2002.

8. Garcıa-Garcıa, J., F. Martın, F. Falcone, J. Bonache, J. D. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, "Microwave filters with improved stopband based on sub-wavelength resonators," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 1997-2006, June 2005.
doi:10.1109/TMTT.2005.848828

9. Li, L., C.-H. Liang, and C. H. Chan, "Waveguide end-slot phased array antenna integrated with electromagnetic bandgap structures," Progress In Electromagnetics Research, Vol. 21, No. 2, 161-174, 2007.

10. Wu, T. L., Y. H. Lin, and S. T. Chen, "A novel power plane with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 7, 337-339, July 2004.

11. Qin, J. and O. M. Ramahi, "Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 9, 487-489, September 2006.
doi:10.1109/LMWC.2006.880713

12. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, November 1999.
doi:10.1109/22.798001