Vol. 5
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-10-27
Approximate Analytical Solutions to Nonlinear Oscillations of Non-Natural Systems Using HE's Energy Balance Method
By
Progress In Electromagnetics Research M, Vol. 5, 43-54, 2008
Abstract
This paper applies He's Energy balance method (EBM) to study periodic solutions of strongly nonlinear systems such as nonlinear vibrations and oscillations. The method is applied to two nonlinear differential equations. Some examples are given to illustrate the effectiveness and convenience of the method. The results are compared with exact solutions which lead us showing a good accuracy. The method can be easily extended to other nonlinear systems and can therefore be found widely applicable in engineering and other science.
Citation
Davoodi Ganji, Salim Karimpour, and Seyedreza Ganji, "Approximate Analytical Solutions to Nonlinear Oscillations of Non-Natural Systems Using HE's Energy Balance Method," Progress In Electromagnetics Research M, Vol. 5, 43-54, 2008.
doi:10.2528/PIERM08081501
References

1. Fidlin, A., Nonlinear Oscillations in Mechanical Engineering, Springer-Verlag, 2006.

2. Dimarogonas, A. D. and S. Haddad, Vibration for Engineers, Prentice-Hall, 1992.

3. He, J. H., "Non-perturbative methods for strongly nonlinear problems," Dissertation, de-Verlag im Internet GmbH, 2006.

4. He, J. H., "Homotopy perturbation technique," Computer Methods in Applied Mechanics and Engineering, Vol. 178, 257-262, 1999.
doi:10.1016/S0045-7825(99)00018-3

5. He, J. H., "The homotopy perturbation method for nonlinear oscillators with discontinuities," Applied Mathematics and Computation, Vol. 151, 287-292, 2004.
doi:10.1016/S0096-3003(03)00341-2

6. Hashemi, S. H., H. R. M. Daniali, and D. D. Ganji, "Numerical simulation of the generalized Huxley equation by He's homotopy perturbation method," Applied Mathematics and Computation, Vol. 192, 157-161, 2007.
doi:10.1016/j.amc.2007.02.128

7. Ganji, D. D. and A. Sadighi, "Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations," Int.J.Nonl.Sci.and Num.Simu., Vol. 7, No. 4, 411-418, 2006.

8. Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, 1981.

9. He, J. H., "Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, Part I: Expansion of a constant," International Journal Non-linear Mechanic, Vol. 37, 309-314, 2002.
doi:10.1016/S0020-7462(00)00116-5

10. He, J. H., "Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations, Part III: Double series expansion," International Journal Non-linear Science and Numerical Simulation, Vol. 2, 317-320, 2001.

11. Wang, S. Q. and J. H. He, "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos & Soliton and Fractals, Vol. 35, 688-691, 2008.
doi:10.1016/j.chaos.2007.07.055

12. He, J. H., "Some asymptotic methods for strongly nonlinear equations," International Journal Modern Physic B, Vol. 20, 1141-1199, 2006.
doi:10.1142/S0217979206033796

13. He, J. H., "Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique," Communications in Nonlinear Science and Numerical Simulation, Vol. 4, 81-82, 1999.
doi:10.1016/S1007-5704(99)90065-5

14. He, J. H., "A review on some new recently developed nonlinear analytical techniques," International Journal of Nonlinear Science and Numerical Simulation, Vol. 1, 51-70, 2000.

15. He, J. H., "Determination of limit cycles for strongly nonlinear oscillators," Physic Review Letter, Vol. 90, 174-181, 2006.

16. Ganji, S. S., D. D. Ganji, Z. Z. Ganji, and S. Karimpour, "Periodic solution for strongly nonlinear vibration systems by energy balance method," Acta Applicandae Mathematicae, doi:10.1007/s10440-008-9283-6.

17. He, J. H., "Preliminary report on the energy balance for nonlinear oscillations," Mechanics Research Communications, Vol. 29, 107-118, 2002.
doi:10.1016/S0093-6413(02)00237-9

18. He, J. H., "Variational iteration method — A kind of nonlinear analytical technique: Some examples," Int.J.Nonline ar Mech., Vol. 34, 699-708, 1999.
doi:10.1016/S0020-7462(98)00048-1

19. Rafei, M., D. D. Ganji, H. Daniali, and H. Pashaei, "The variational iteration method for nonlinear oscillators with discontinuities," Journal of Sound and Vibration, Vol. 305, 614-620, 2007.
doi:10.1016/j.jsv.2007.04.020

20. He, J. H. and X. H. Wu, "Construction of solitary solution and compaction-like solution by variational iteration method," Chaos, Solitons & Fractals, Vol. 29, 108-113, 2006.
doi:10.1016/j.chaos.2005.10.100

21. Varedi, S. M., M. J. Hosseini, M. Rahimi, and D. D. Ganji, "He's variational iteration method for solving a semi-linear inverse parabolic Equation," Physics Letters A, Vol. 370, 275-280, 2007.
doi:10.1016/j.physleta.2007.05.100

22. Hashemi, S. H. A., K. N. Tolou, A. Barari, and A. J. Choobbasti, "On the approximate explicit solution of linear and non-linear non-homogeneous dissipative wave equations," Istanbul Conferences, 2008.

23. He, J. H., "Variational approach for nonlinear oscillators," Chaos, Solitons and Fractals, Vol. 34, 1430-1439, 2007.
doi:10.1016/j.chaos.2006.10.026

24. Naghipour, M., D. D. Ganji, S. H. A. Hashemi, and K. Jafari, "Analysis of non-linear oscillations systems using analytical approach," Journal of Physics, Vol. 96, 2008.

25. Wu, Y., "Variational approach to higher-order water-wave equations," Chaos & Solitons and Fractals, Vol. 32, 195-203, 2007.
doi:10.1016/j.chaos.2006.05.019

26. Xu, L., "Variational approach to solitons of nonlinear dispersive K(m, n) equations," Chaos, Solitons & Fractals, Vol. 37, 137-143, 2008.
doi:10.1016/j.chaos.2006.08.016

27. Inokuti, M., et al. "General use of the Lagrange multiplier in non–linear mathematical physics," Variational Method in the Mechanics of Solids, 1978.

28. "Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method," Chaos, Solitons & Fractals, Vol. 23, No. 2, 573-576, 2005.
doi:10.1016/j.chaos.2004.05.005

29. He, J. H., "Variational principles for some nonlinear partial differential equations with variable coefficient," Chaos, Solitons and Fractals, Vol. 19, No. 4, 847-851, 2004.
doi:10.1016/S0960-0779(03)00265-0

30. Wu, B. S., C. W. Lim, and L. H. He, "A new method for approximate analytical solutions to nonlinear oscillations of nonnatural systems," Nonlinear Dynamics, Vol. 32, 1-13, 2003.
doi:10.1023/A:1024223118496

31. Nayfeh, A. H. and D. T. Mook, Nonlinear Oscillations, Wiley, 1979.

32. He, J. H., "Variational iteration method — Some recent results and new interpretations," Journal of Computational and Applied Mathematics, Vol. 207, 3-17, 2007.
doi:10.1016/j.cam.2006.07.009

33. Dehghan, M. and F. Shakeri, "Solution of an integro-differential equation arising in oscillation magnetic fields using He's homotopy perturbation method," Progress In Electromagnetics Research, Vol. 78, 361-376, 2008.
doi:10.2528/PIER07090403

34. Belendez, A., C. Pascual, S. Gallego, M. Ortuno, and C. Neipp, "Application of a modified He's homotopy perturbation method to obtain higher-order approximations of an force nonlinear oscillator," Physics Letters A, Vol. 371, 421, 2007.
doi:10.1016/j.physleta.2007.06.042

35. Belendez, A., C. Pascual, M. Ortuno, C. Neipp, T. Belendez, and S. Gallego, "Application of a modified He's homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities," Nonlinear Analysis: Real World Applications, 2007.

36. Ganji, S. S., D. D. Ganji, H. Babazadeh, and S. Karimpour, "Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic Duffing oscillators," Progress In Electromagnetics Research M, Vol. 4, 23-32, 2008.
doi:10.2528/PIERM08061007

37. Pashaei, H., D. D. Ganji, and M. Akbarzade, "Application of energy balance method for strongly nonlinear oscillators," J. Progress In Electromagnetics Research M, Vol. 2, 47-56, 2008.
doi:10.2528/PIERM08031602

38. Akbarzade, M., D. D. Ganji, and H. Pashaei, "Progress analysis of nonlinear oscillators with force by He's energy balance method," J.Pr ogress In Electromagnetics Research C, Vol. 3, 57-66, 2008.
doi:10.2528/PIERC08032901

39. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of microwave oscillators using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
doi:10.2528/PIER07100101