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Abstract—This paper applies He’s Energy balance method (EBM) to
study periodic solutions of strongly nonlinear systems such as nonlinear
vibrations and oscillations. The method is applied to two nonlinear
differential equations. Some examples are given to illustrate the
effectiveness and convenience of the method. The results are compared
with exact solutions which lead us showing a good accuracy. The
method can be easily extended to other nonlinear systems and can
therefore be found widely applicable in engineering and other science.

1. INTRODUCTION

Nonlinear oscillation systems are such phenomena that mostly
nonlinearly occur. These systems are important in engineering
because many practical engineering components consist of vibrating
systems that can be modeled using oscillator systems such as elastic
beams supported by two springs or mass-on-moving belt or nonlinear
pendulum and vibration of a milling machine [1, 2]. Hence solving of
governing equations and due to limitation of existing exact solutions
have been one of the most time-consuming and difficult affairs
among researchers of vibrations problems. If there is no small
parameter in the equation, the traditional perturbation methods
cannot be applied directly. Recently, considerable attention has
been directed towards the analytical solutions for nonlinear equations
without possible small parameters. The traditional perturbation
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methods have many shortcomings, and they are not valid for strongly
nonlinear equations. To overcome the shortcomings, many new
techniques have been appeared in open literature [3–14], such as Non–
perturbative methods [3], homotopy perturbation method [4–7, 33–
35], perturbation techniques [8], Lindstedt-Poincaré method [9, 10],
parameter–expansion method [11, 12] and Parameterized perturbation
method [13, 14].

Recently, some approximate variational methods, including
approximate energy method [15–17, 37, 38], variational iteration
method [18–22] and variational approach [23–29, ] and other methods
[39], to solution, bifurcation, limit cycle and period solutions of
nonlinear equations have been paid much attention.

This paper presents energy balance method (EBM) to study
periodic solutions of strongly nonlinear systems. In this method, a
variational principle for the nonlinear oscillation is established, then
a Hamiltonian is constructed, from which the angular frequency can
be readily obtained by collocation method. The results are valid not
only for weakly nonlinear systems, but also for strongly nonlinear ones.
Some examples reveal that even the lowest order approximations are
of high accuracy.

2. ENERGY BALANCE METHOD

In the present paper, we consider a general nonlinear oscillator in the
form [17]:

u′′ + f = 0 (1)

in which u and t are generalized dimensionless displacement and time
variables, respectively, and f = f(u, u′, t).

Its variational principle can be easily obtained:

J(u) =
∫ t

0

(
−1

2
u′2 + F (u)

)
dt (2)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 + F (u) = F (A) (3)

Or:

R(t) =
1
2
u′2 + F (u) − F (A) = 0 (4)
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Oscillatory systems contain two important physical parameters, i.e.,
the frequency ω and the amplitude of oscillation, A. So let us consider
such initial conditions:

u(0) = A, u′(0) = 0 (5)

Assume that its initial approximate guess can be expressed as:

u(t) = A cos(ωt) (6)

Substituting Eq. (6) into u term of Eq. (4), yield:

R(t) =
1
2
ω2A2 sin2 ωt + F (A cos ωt) − F (A) = 0 (7)

If by any chance, the exact solution had been chosen as the trial
function, then it would be possible to make R zero for all values of
t by appropriate choice of ω. Since Eq. (5) is only an approximation
to the exact solution, R cannot be made zero everywhere. Collocation
at ωt = π/4 gives:

ω =

√
2 (F (A) − F (A cos(π/4)))

A2 sin2(π/4)
(8)

Its period can be written in the form:

T =
2π√

2 (F (A) − F (A cos(π/4)))
A2 sin2(π/4)

(9)

3. APPLICATIONS OF STRONGLY NONLINEAR
VIBRATION SYSTEMS

In this section, we will present three examples to illustrate the
applicability, accuracy and effectiveness of the proposed approach.

Example 1. The motion of a particle on a rotating parabola. The
governing equation of motion and initial conditions can be expressed
as [30]:

(
1 + 4q2u2

) d2u

dt2
+ 4q2u

(
du

dt

)2

+ ∆u = 0, u(0) = A,
du

dt
(0) = 0.

(10)
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where q > 0 and ∆ > 0 are known positive constants [31]. For this
problem, f(u) = 4q2u2 d2u

dt2
+4q2u

(
du
dt

)2
+∆u and F (u) = −2q2u2u′2 +

1
2∆u2. Its variational and Hamiltonian formulations can be readily
obtained as follows:

J(u) =
∫ t

0

(
−1

2
u′2 − 2q2u2u′2 +

1
2
∆u2

)
dt, (11)

H =
1
2
u′2 + 2q2u2u′2 +

1
2
∆u2 =

1
2
∆A2, (12)

R(t) =
1
2
u′2 + 2q2u2u′2 +

1
2
∆u2 − 1

2
∆A2 = 0, (13)

Substituting Eq. (6) into Eq. (13), we obtain:

R(t) =
1
2
A2ω2 sin2(ωt) + 2q2ω2A4 cos2(ωt) sin2(ωt)

+
1
2
∆A2 cos2(ωt) − 1

2
∆A2 = 0, (14)

If we collocate at ωt = π/4, we obtain the following result:

ω =

√
∆

(4A2q2 cos2(π/4) + 1)
, (15)

with T = 2π
ω , yield:

T =
2π√
∆

(4A2q2 cos2(π/4) + 1)

, (16)

Simplifying Eq. (16), gives:

ωEBM =

√
∆

(2A2q2 + 1)
, (17)

with T = 2π
ω , yield:

TEBM =
2π√
∆

(2A2q2 + 1)

, (18)
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The exact period is [30]:

Tex = 4∆
−1
2

∫ π
2

0

(
1 + 4q2A2 cos2 ϕ

) 1
2 dϕ. (19)

For comparison, the exact periodic solutions uex(t) achieved by Eqs. (6)
and (20), the approximate analytical periodic solutions uEBM(t)
computed by Eqs. (6) and (19), are plotted in Figs. 1(a)–(c).

(a) (b)

(c)

Figure 1. Comparison of the approximate solution (EBM) with the
exact solution for Example 1, (a) q = 0.5, ∆ = 0.5, A = 0.5, (b) q = 1,
∆ = 1, A = 0.5, (c) q = 1, ∆ = 10, A = 0.5.
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Example 2. The motion of a rigid rod rocking back and forth
on the circular surface without slipping. The governing equation of
motion can be expressed as [30]:(

1
12

+
1
16

u2

)
d2u

dt
+

1
16

u

(
du

dt

)2

+
g

4l
u cos u = 0,

u(0) = A,
du

dt
(0) = 0, (20)

where g > 0 and l > 0 are known positive constants [31].
For the problem, its variational formulation can be obtained as

follows:

J(u) =
∫ t

0

(
−1

2
u′2 − 3

8
u2u′2 +

3g (cos u + sinu)
l

)
dt, (21)

By a similar manipulation as illustrated in previous example by using
Eq. (6) and with T = 2π

ω , if we substituting ωt = π/4, we obtain the
following result:

R(t) =
1
2
A2ω2 sin2(ωt) +

3
8
A4ω2 cos2(ωt) sin2(ωt)

+

3g (cos (A cos(ωt)) + A cos(ωt) sin (A cos(ωt))
− cos(A) − A sin(A))

l
= 0, (22)

ω =

√
2

(
−6 lg

(
3A2 cos2(π/4) + 4

)
(cos(A cos(π/4))

+A cos(π/4) sin(A cos(π/4)) − cos(A) − A sin(A)))
(lA (3A2 cos2(π/4) + 4) sin(π/4))

, (23)

T =
2π

(
lA

(
3A2 cos2(π/4) + 4

)
sin(π/4)

)
√

2
(
−6 lg

(
3A2 cos2(π/4) + 4

)
(cos(A cos(π/4))

+A cos(π/4) sin(A cos(π/4)) − cos(A) − A sin(A)))

, (24)

Substituting ωt = π/4 into (24), (25), we have:

ωEBM =
4
√

−3 lg (8 + 3A2) (η)
lA (3A2 + 8)

, (25)

TEBM =
2πlA

(
3A2 + 8

)
4
√

−3 lg (8 + 3A2) (η)
. (26)

where η is:

η = 2 cos

(
A
√

2
2

)
+ A

√
2 sin

(
A
√

2
2

)
− 2 cos(A) − 2A sin(A) (27)
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p3 : −δ
∂2v3(x, t)

∂x2
+ v2(x, t)

∂v0(x, t)
∂x

+
∂v2(x, t)

∂t

+v1(x, t)
∂v1(x, t)

∂x
+ v0(x, t)

∂v2(x, t)
∂x

= 0.

(a) (b)

(c) (d)

Figure 2. Comparison of the approximate solution (EBM) with the
exact solution for Example 2, (a) g = l = 1, A = 0.25π, (b) g = 10,
l = 1, A = 0.25π, (c) g = 1, l = 1, A = 0.35π, (d) g = 1, l = 1,
A = 0.15π.
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The exact period of (20) is:

Tex = 4∆
−1
2

∫ π/2

0( (
4 + 3A2 sin2 ϕ

)
A2 cos2 ϕ

8 [A sinA + cos A − A sinϕ sin(A sinϕ) − cos] (A sinϕ)

) 1
2

dϕ.(28)

The exact period Tex achieved by Eq. (28), the approximate period
TEBM calculated by Eq. (26), are shown in Table 1. Note that for
the problem, the maximum amplitude of oscillation should satisfy
A < π/2.

Table 1 indicates that Eq. (25) can give an excellent approximate
period for oscillation amplitude except those near A = π/2.

Table 1. Comparison of approximate periods with exact period for
Example 2.

A TEBM Tex Error percentage
0.05π 3.66129 3.66109 0.0054
0.10π 3.76397 3.76397 0.0008
0.15π 3.94064 3.94086 0.0056
0.20π 4.20181 4.20292 0.02642
0.25π 4.56432 4.56948 0.1129
0.30π 5.05831 5.07728 0.37348
0.35π 5.73741 5.79770 1.0399
0.40π 6.70586 6.89564 2.7521
0.45π 8.60226 8.94333 3.8136

The exact periodic solution uex(t) obtained by Eqs. (6) and (28),
and the approximate analytical periodic solutions uEBM(t) computed
by Eqs. (6) and (25) are plotted in Figs. 2(a)–(d).

4. CONCLUSION

The Energy Balance Method (EBM) is used to obtain two approximate
frequencies for two nonlinear oscillatory systems. Excellent agreement
between approximate frequencies and the exact one is demonstrated
and discussed. We think that the method has a great potential and
can be applied to other strongly nonlinear oscillators.
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