Vol. 85
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-29
Microwave Imaging a Buried Object by the GA and Using the S11 Parameter
By
Progress In Electromagnetics Research, Vol. 85, 289-302, 2008
Abstract
This paper explores the feasibility of microwave imaging a buried object by the GA and using the S11 parameter of a radiation antenna rather than data of the scattered electromagnetic field. To improve the efficiency of the GA-based algorithm, a technique of limiting the location of the buried object prior to the implement of the GA is proposed, and the GA is parallelized and executed on a PC cluster. A few numerical examples are presented, in which the dimension and location of a 3-D object buried in the earth are recovered. Results validate the proposed GA-based microwave imaging algorithm.
Citation
Fei Li, Xing Chen, and Ka-Ma Huang, "Microwave Imaging a Buried Object by the GA and Using the S11 Parameter," Progress In Electromagnetics Research, Vol. 85, 289-302, 2008.
doi:10.2528/PIER08081401
References

1. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

2. Cui, T. J. and W. C. Chew, "Novel diffraction tomographic algorithm for imaging two-dimensional dielectric objects buried under a lossy earth," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, 2033-2041, July 2000.

3. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Y. Chen, "Inverse scattering of two dimensional dielectric objects buried in a lossy earth using the distorted born iterative method ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 2, 339-345, Feb. 2001.
doi:10.1109/36.905242

4. Bucci, O. M., G. D’Elia, and M. Santojanni, "A fast multipole approach to 2D scattering evaluation based on a non redundant implementation of the method of auxiliary sources," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1715-1723, 2006.
doi:10.1163/156939306779292174

5. Caorsi, S., A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, "Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2878-2884, Oct. 2003.
doi:10.1109/TAP.2003.817984

6. Steinbauer, M. and R. Kubasek, "Numerical method of simulation of material influences in mr tomograohy," Progress In Electromagnetics Research Letters, Vol. 1, 205-210, 2008.
doi:10.2528/PIERL07120605

7. Zhong, X. M., C. Liao, W. Chen, Z. B. Yang, Y. Liao, and F. B. Meng, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786

8. Zacharopoulos, A., S. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, "3D shape reconstruction in optical tomography using spherical harmonics and BEM ," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1827-1836, 2006.
doi:10.1163/156939306779292165

9. Chi, C.-C. and W.-T. Chen, "Electromagnetic imaging for an tly conducting cylinder by the genetic algorithm," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, Nov. 2000.

10. Caorsi, S. and M. Pastorino, "Two-dimensional microwave imaging approach based on a genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 3, March 2000.
doi:10.1109/8.841897

11. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604

12. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Pmpagatiin Magazine, Vol. 37, No. 2, April 1995.

13. Rostami, A. and A. Yazdanpanah-Goharrizi, "A new method for classification and identification of complex fiber Bragg grating using the genetic algorithm ," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802

14. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

15. Kerr, Y. H., "The multi-frequency imaging microwave radiometer: applications to land surface parameter retrieval," Geoscience and Remote Sensing Symposium, 1991. IGARSS ’91. ‘Remote Sensing: Global Monitoring for Earth Management’, Internation.

16. Vertiy, A. and S. Gavrilov, "Imaging of buried object by tomography method using multifrequency regularization process," 11th Int. Conf. on Mathematical Methods in Electromagnetic Theory, Kharkiv, Ukraine, June 26–29, 2006.

17. Guo, Y., S. A. Kassam, F. Ahmad, and M. Amin, "Reduced complexity multi-frequency imaging using active aperture synthesis," IEEE Antenna and Propagation Society International Symposium, 2004.

18. Li, C.-L., Y. Sun, L. Zhang, and X.-C. Wang, "A parallel micro-genetic algorithm its application ," Proceeding of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, August 18–21, 2005.

19. Meng, Z.-Q., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506

20. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993.

21. Taflove, A., Advance in Computational Electrodynamics, Artech House, 1998.

22. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 4, 302-307, 1966.

23. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPRapplications: A comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 53-56, 2006.
doi:10.1163/156939306775777224

24. Ali, M. and S. Sanyal, "FDTD analysis of rectangular waveguide in receiving mode as ems sensors," Progress In Electromagnetics Research B, Vol. 2, 291-303, 2008.
doi:10.2528/PIERB07112901

25. Ding, W., Y. Zhang, P. Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MoM-FDTD method ," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255

26. Chen, X. and K. Huang, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method ," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

27. Zhang, Y., X. W. Zhao, M. Chen, and C. H. Liang, "An efficient MPI virtual topology based parallel, iterative MoM-PO hybrid method on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 661-667, 2006.
doi:10.1163/156939306776137782