Vol. 85
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-19
Image Reconstruction of the Buried Metallic Cylinder Using FDTD Method and SSGA
By
Progress In Electromagnetics Research, Vol. 85, 195-210, 2008
Abstract
This paper presents an image reconstruction approach based on the time-domain and steady state genetic algorithm (SSGA) for a 2-D perfectly conducting cylinder buried in a half-space. The computational method combines the finite difference time domain (FDTD) method and the steady state genetic algorithms (SSGA) to determine the shape and location of the subsurface scatterer with arbitrary cross section. The subgirdding technique is implemented in the FDTD code for modeling the shape of the cylinder more closely. In order to describe an unknown 2-D cylinder with arbitrary cross section more effectively, the shape function is expanded by closed cubic-spline function instead of frequently used trigonometric series. The inverse problem is reformulatedin to an optimization problem and the global searching scheme SSGA with closedcubic-spline is then employed to search the parameter space. Numerical results show that the shadowing effect for the inverse problem in a half space results in poor image reconstruction on the backside of the cylinder. We propose the two-step strategy to overcome the shadowing effect. It is found that goodimaging quality could be attainedbasedon the proposed strategy.
Citation
Chung-Hsin Huang, Chien-Ching Chiu, Ching-Lieh Li, and Yin-Hann Li, "Image Reconstruction of the Buried Metallic Cylinder Using FDTD Method and SSGA," Progress In Electromagnetics Research, Vol. 85, 195-210, 2008.
doi:10.2528/PIER08072901
References

1. Kirsch, A. and R. Kress, "Uniqueness in inverse obstacle scattering," Inverse Problems, Vol. 9, 285-299, 1993.
doi:10.1088/0266-5611/9/2/009

2. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.

3. Ma, J., W. C. Chew, C. C. Lu, and J. Song, "Image reconstruction from TE scattering data using equation of strong permittivity fluctuation," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 6, 860-867, June 2000.
doi:10.1109/8.865217

4. Chien, W. and C. C. Chiu, "Using NU-SSGA to reduce the searching time in inverse problem of a buriedmetallic object," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3128-3134, October 2005.
doi:10.1109/TAP.2005.856362

5. Qing, A., "An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the realcoded genetic algorithm," Microwave and Optical Technology Letters, Vol. 30, 315-320, September 2001.
doi:10.1002/mop.1301

6. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, 1697-1708, July 2000.
doi:10.1109/36.851968

7. Takenaka, T., Z. Q. Meng, T. Tanaka, and W. C. Chew, "Local shape function combinedwith genetic algorithm applied to inverse scattering for strips," Microwave and Optical Technology Letters, Vol. 16, 337-341, December 1997.
doi:10.1002/(SICI)1098-2760(19971220)16:6<337::AID-MOP5>3.0.CO;2-L

8. Li, C.-L., S.-H. Chen, C.-M. Yang, and C.-C. Chiu, "Image reconstruction for a partially immersed perfectly conducting cylinder using the steady state genetic algorithm," Radio Sci., Vol. 39, RS2016, 2004.
doi:10.1029/2002RS002742

9. Huang, C.-H., Y.-F. Chen, and C.-C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790

10. Wei, C., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902

11. Bermani, E., S. Caorsi, and M. Raffetto, "Geometric and dielectric characterization of buried cylinders by using simple time-domain electromagnetic data and neural networks," Microwave and Optical Technology Letters, Vol. 24, No. 1, 24-31, January 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<24::AID-MOP9>3.0.CO;2-U

12. Popovic, M. and A. Taflove, "Two-dimensional FDTD inversescattering scheme for determination of near surface material properties," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2366-2373, September 2004.
doi:10.1109/TAP.2004.832515

13. Yu, W., Z. Peng, and L. Jen, "The time-domain Born iterative method for two-dimensional inhomogeneous lossy dielectric," Journal of Microwaves, Vol. 11, No. 12, 1995.

14. Moghaddam, M. and W. C. Chew, "Nonlinear two-dimensional velocity profile inversion using time-domain data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 1, 147-156, 1992.
doi:10.1109/36.124225

15. Moghaddam, M. and W. C. Chew, "Study of some practical issues in inversion with the Born iterative methodusing time-domain data," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 177-184, 1993.
doi:10.1109/8.214608

16. Rekanos, I. T., "Time-domain inverse scattering using lagrange multipliers: An iterative FDTD-basedoptimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
doi:10.1163/156939303322235824

17. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, 1609-1625, 2000.
doi:10.1163/156939300X00383

18. Goldgerg, D. E., Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, 1989.

19. Zhong, X.-M., C. Liao, and W. Chen, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786

20. Huang, C. H., S. H. Chen, C. L. Li, and C. C. Chiu, "Time domain inverse scattering of an embedded cylinder with arbitrary shape using nearly resonant technique," 2004 International Conference on Electromagnetic Applications and Compatibility, October 2004.

21. Chen, X. and K. Huang, "Microwave Imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

22. Choi, H.-K., S.-K. Park, and J.-W. Ra, "Reconstruction of a highcontrast penetrable object in pulsedtime domain by using the genetic algorithm," IEEE International Sym. on Geoscience and Remote Sensing, Vol. 1, 136-138, 1997.

23. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using Parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves Application, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

24. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local grid with material traverse," IEEE Trans. Antennas and Propagation, Vol. 45, No. 3, March 1997.
doi:10.1109/8.558656

25. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904

26. De Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

27. Li, C.-L., C.-W. Liu, and S.-H. Chen, "Optimization of a PML absorbe's conductivity profile using FDTD," Microwave and Optical Technology Lett., Vol. 37, 380-383, 2003.
doi:10.1002/mop.10924