1. Kirsch, A. and R. Kress, "Uniqueness in inverse obstacle scattering," Inverse Problems, Vol. 9, 285-299, 1993.
doi:10.1088/0266-5611/9/2/009
2. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.
3. Ma, J., W. C. Chew, C. C. Lu, and J. Song, "Image reconstruction from TE scattering data using equation of strong permittivity fluctuation," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 6, 860-867, June 2000.
doi:10.1109/8.865217
4. Chien, W. and C. C. Chiu, "Using NU-SSGA to reduce the searching time in inverse problem of a buriedmetallic object," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3128-3134, October 2005.
doi:10.1109/TAP.2005.856362
5. Qing, A., "An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the realcoded genetic algorithm," Microwave and Optical Technology Letters, Vol. 30, 315-320, September 2001.
doi:10.1002/mop.1301
6. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, 1697-1708, July 2000.
doi:10.1109/36.851968
7. Takenaka, T., Z. Q. Meng, T. Tanaka, and W. C. Chew, "Local shape function combinedwith genetic algorithm applied to inverse scattering for strips," Microwave and Optical Technology Letters, Vol. 16, 337-341, December 1997.
doi:10.1002/(SICI)1098-2760(19971220)16:6<337::AID-MOP5>3.0.CO;2-L
8. Li, C.-L., S.-H. Chen, C.-M. Yang, and C.-C. Chiu, "Image reconstruction for a partially immersed perfectly conducting cylinder using the steady state genetic algorithm," Radio Sci., Vol. 39, RS2016, 2004.
doi:10.1029/2002RS002742
9. Huang, C.-H., Y.-F. Chen, and C.-C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790
10. Wei, C., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902
11. Bermani, E., S. Caorsi, and M. Raffetto, "Geometric and dielectric characterization of buried cylinders by using simple time-domain electromagnetic data and neural networks," Microwave and Optical Technology Letters, Vol. 24, No. 1, 24-31, January 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<24::AID-MOP9>3.0.CO;2-U
12. Popovic, M. and A. Taflove, "Two-dimensional FDTD inversescattering scheme for determination of near surface material properties," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2366-2373, September 2004.
doi:10.1109/TAP.2004.832515
13. Yu, W., Z. Peng, and L. Jen, "The time-domain Born iterative method for two-dimensional inhomogeneous lossy dielectric," Journal of Microwaves, Vol. 11, No. 12, 1995.
14. Moghaddam, M. and W. C. Chew, "Nonlinear two-dimensional velocity profile inversion using time-domain data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 1, 147-156, 1992.
doi:10.1109/36.124225
15. Moghaddam, M. and W. C. Chew, "Study of some practical issues in inversion with the Born iterative methodusing time-domain data," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 177-184, 1993.
doi:10.1109/8.214608
16. Rekanos, I. T., "Time-domain inverse scattering using lagrange multipliers: An iterative FDTD-basedoptimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
doi:10.1163/156939303322235824
17. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, 1609-1625, 2000.
doi:10.1163/156939300X00383
18. Goldgerg, D. E., Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
19. Zhong, X.-M., C. Liao, and W. Chen, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786
20. Huang, C. H., S. H. Chen, C. L. Li, and C. C. Chiu, "Time domain inverse scattering of an embedded cylinder with arbitrary shape using nearly resonant technique," 2004 International Conference on Electromagnetic Applications and Compatibility, October 2004.
21. Chen, X. and K. Huang, "Microwave Imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902
22. Choi, H.-K., S.-K. Park, and J.-W. Ra, "Reconstruction of a highcontrast penetrable object in pulsedtime domain by using the genetic algorithm," IEEE International Sym. on Geoscience and Remote Sensing, Vol. 1, 136-138, 1997.
23. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using Parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves Application, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264
24. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local grid with material traverse," IEEE Trans. Antennas and Propagation, Vol. 45, No. 3, March 1997.
doi:10.1109/8.558656
25. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904
26. De Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.
27. Li, C.-L., C.-W. Liu, and S.-H. Chen, "Optimization of a PML absorbe's conductivity profile using FDTD," Microwave and Optical Technology Lett., Vol. 37, 380-383, 2003.
doi:10.1002/mop.10924