Vol. 4
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-08-08
A Recurrence Technique for Computing the Effective Indexes of the Guided Modes of Coupled Single-Mode Waveguides
By
Progress In Electromagnetics Research M, Vol. 4, 33-46, 2008
Abstract
The recurrence dispersion equation of coupled single-mode waveguides is modified by eliminating redundant singularities from the dispersion function. A recurrence zero-bracketing (RZB) technique is proposed in which the zeros of the dispersion function at one recurrence step bracket those of the next recurrence step. Numerical examples verify the utility of the RZB technique in computing the roots of the dispersion equation of the TE and TM modes of both uniform and non-uniform arrays.
Citation
Tarek A. Ramadan, "A Recurrence Technique for Computing the Effective Indexes of the Guided Modes of Coupled Single-Mode Waveguides," Progress In Electromagnetics Research M, Vol. 4, 33-46, 2008.
doi:10.2528/PIERM08063005
References

1. Kaplan, A. and S. Ruschin, "Optical switching and power control in LiNbO3 coupled waveguide arrays," IEEE J. Quantum Electron., Vol. 37, 1562-1573, 2001.
doi:10.1109/3.970903

2. Lee, M.-H., Y. H. Min, S. Park, J. J. Ju, J. Y. Do, and S. K. Park, "Fully packages polymeric four arrayed 2×2 digital optical switch," Photon. Technol. Lett., Vol. 14, 615-617, 2002.
doi:10.1109/68.998702

3. Kawakita, Y., T. Saitoh, S. Shimotaya, and K. Shimomura, "A novel straight arrayed waveguide grating with linearly varying refractive-index distribution ," IEEE Photon. Technol. Lett., Vol. 16, 144-146, 2004.
doi:10.1109/LPT.2003.819366

4. Kawakita, Y., S. Shimotaya, A. Kawai, D. Machida, and K. Shimomura, "Wavelength demultiplexer using GaInAs-InP MQW-based variable refractive index arrayed waveguides fabricated by selective MOVPE," IEEE J. Select. Quantum. Electron., Vol. 11, 211-216, 2005.
doi:10.1109/JSTQE.2004.841472

5. Tangdiongga, E., Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dor, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett., Vol. 18, 1627-1629, 2006.
doi:10.1109/LPT.2006.878152

6. Choi, C.-G., S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, "Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process," IEEE Photon. Technol. Lett., Vol. 15, 825-827, 2003.
doi:10.1109/LPT.2003.811139

7. Olivero, M. and M. Svalgaard, "Fabrication of 2×8 power splitters in silica-on-silicon by direct UV writing technique," IEEE Photon. Technol. Lett., Vol. 18, 802-804, 2006.
doi:10.1109/LPT.2006.871694

8. Marcuse, D., Theory of Dielectric Optical Waveguides, Academic, New York, 1991.

9. Chilwell, J. and I. Hodgkinson, "Thin-films field transfer matrix theory of planar multiplayer waveguides and reflection from prismloaded waveguides," J. Opt. Soc. Am. A, Vol. 1, 742-753, 1984.
doi:10.1364/JOSAA.1.000742

10. Walpita, L. M., "Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix," J. Opt. Soc. Am. A, Vol. 2, 595-602, 1985.
doi:10.1364/JOSAA.2.000595

11. Li, Y.-F. and J. W. Y. Lit, "General formulas for the guiding properties of a multiplayer slab waveguide," J. Opt. Soc. Am. A, Vol. 4, 671-677, 1987.
doi:10.1364/JOSAA.4.000671

12. Li, Y.-F. and J. W. Y. Lit, "Generalized dispersion properties of a multilayer dielectric planar waveguide," J. Opt. Soc. Am. A, Vol. 9, 121-129, 1992.
doi:10.1364/JOSAA.9.000121

13. Yeh, P., "Resonant tunneling of electromagnetic radiation in superlattice structures," J. Opt. Soc. Am. A, Vol. 2, 568-571, 1985.
doi:10.1364/JOSAA.2.000568

14. Chiang, K. S., "Coupled-zigzag-wave theory for guided waves in slab waveguide arrays," J. Lightwave Technol., Vol. 10, 1380-1387, 1992.
doi:10.1109/50.166780

15. Anemogiannis, E. and E. N. Glytsis, "Multilayer waveguides: Efficient numerical analysis of general structures," J. Lightwave Technol., Vol. 10, 1344-1351, 1992.
doi:10.1109/50.166774

16. Smith, R. E., S. N. Houde-Walter, and G. W. Forbes, "Mode determination of planar waveguides using the four-sheeted dispersion relation ," IEEE J. Quantum. Electron., Vol. 28, 1520-1526, 1992.
doi:10.1109/3.135305

17. Chen, C., P. Berini, D. Feng, and V. P. Tozolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides," Proc. SPIE, Vol. 3797, 676-686, July 1999.

18. Chen, C., P. Berini, D. Feng, S. Tanev, and V. P. Tozolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides," Opt. Express, Vol. 7, 260-272, 2000.
doi:10.1364/OE.7.000260

19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing,", Cambridge University Press, New York, 1996.

20. Ma, C., "Coupling properties in periodic waveguides and in multiple quantum-well waveguides ," IEEE J. Quantum. Electron., Vol. 30, 2811-2816, 1994.
doi:10.1109/3.362739

21., The MathWorks, Inc., Natick, MA, USA.

22. Kogelnik, H., "Theory of optical waveguides," Guided-wave Optoelectronics, T. Tamir (ed.), Ch. 2, Springer-Verlag, New York, 1990.

23. Hadley, G. R. and R. E. Smith, "Full-vector waveguide modeling using an iterative finite difference method with transparent boundary conditions ," IEEE J. Quantum. Electron., Vol. 13, 465-469, 1995.

24. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins Univ. Press, Baltimore, MD, 1983.