Vol. 3
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-04
Improved Spectral Iteration Technique for the Scattering by Thin Metal Plates
By
Progress In Electromagnetics Research M, Vol. 3, 1-13, 2008
Abstract
The problem of electromagnetic scattering by thin metal plates is formulated in terms of Electric Field Integral Equation and solved by an improved form of the Spectral Iteration Technique. The local solution at the edges of the plate is chosen as initial guess for the unknown surface current in order to guarantee and enhance the convergence of the iterative scheme. Numerical simulations on a square conducting plate are presented to validate the proposed approach.
Citation
Sandra Costanzo, and Giuseppe Di Massa, "Improved Spectral Iteration Technique for the Scattering by Thin Metal Plates," Progress In Electromagnetics Research M, Vol. 3, 1-13, 2008.
doi:10.2528/PIERM08050603
References

1. Ross, R. A. and M. Hamid, "Bistatic scattering from rectangular plates," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 8, 1111-1124, 2005.
doi:10.1163/156939305775526115

2. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "An integral equation modelling of electromagnetic scattering from the surfaces of arbitrary resistance distribution ," Progress In Electromagnetics Resarch B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404

3. Li, Y.-L., J.-Y. Huang, M.-J. Wang, and J. Zhang, "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagation direction ," Progress In Electromagnetics Resarch B, Vol. 1, 221-235, 2008.
doi:10.2528/PIERL07120610

4. Harrington, R. F., Field Computation by Moment Method, MacMillan Press, 1968.

5. Mittra, R. and K. Du, "Characteristic basis function method for iterative-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

6. Guo, J.-L., J.-Y. Li, and Q.-Z. Liu, "Electromagnetic analysis of couplet conducting and dielectric targets using MoM with a preconditioner," Journal of Electromagnetic Waves and Applications , Vol. 19, No. 9, 1223-1236, 2005.
doi:10.1163/156939305775526007

7. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and Method of Moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

8. Su, C. and T. K. Sarkar, "Analysis of scattering from perfectly conducting plates by the use of AMMM," Progress In Electromagnetics Research, Vol. 21, 71-89, 1999.
doi:10.2528/PIER98040100

9. Nie, X.-C., L.-W. Li, and N. Yuan, "Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1171-1187, 2002.
doi:10.1163/156939302X00697

10. Kleinman, R. E. and P. M. van den Berg, "Iterative methods for solving integral equations," Progress In Electromagnetics Research, Vol. 5, 67-102, 1991.

11. Hamid, A. K. and M. I. Hussein, "Iterative solution to the electromagnetic plane wave scattering by two parallel conducting elliptic cylinders ," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 6, 813-828, 2003.
doi:10.1163/156939303322503376

12. Chiang, I.-T. and W.-C. Chew, "New formulation and iterative solution for low-frequency volume integral equation," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 289-306, 2005.
doi:10.1163/1569393054139633

13. Zhai, H.-Q. and C.-H. Liang, "A simple iterative current-based hybrid method and its fast implementation over a wide frequency band," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 55-66, 2005.
doi:10.1163/1569393052955062

14. Volakis, J. L. and K. Barkeshli, "Applications of the Conjugate Gradient FFT method to radiation and scattering," Progress In Electromagnetics Research, Vol. 5, 159-239, 1991.

15. Peterson, A. F., S. L. Ray, C. H. Chen, and R. Mittra, "Numerical implementations of the conjugate gradient method and the CGFFT for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 5, 241-300, 1991.

16. Catedra, M. F. and R. P. Torres, "A scheme to analyze scattering from metallic periodic structures using the conjugate-gradient and the fast fourier transform method ," Progress In Electromagnetics Research, Vol. 4, 315-343, 1991.

17. Wilton, D. R. and J. E. Wheeler III, "Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations," Progress In Electromagnetics Research, Vol. 5, 131-158, 1991.

18. Zwamborn, A. P. M. and P. M. van den Berg, "A weak form of the conjugate gradient FFT method for plate problems," IEEE Trans. Antennas Propag., Vol. 39, No. 2, 224-228, 1991.
doi:10.1109/8.68186

19. Mittra, R. and C. H. Chan, "Iterative approaches to the solution of electromagnetic boundary value problems," Electromagnetics, Vol. 5, 123-146, 1985.
doi:10.1080/02726348508908144

20. Ko, W. L. and R. Mittra, "A new approach based on a combination of integral equation and asymptotic techniques for solving electromagnetic scattering problems ," IEEE Trans. Antennas Propag., Vol. 25, No. 2, 187-197, 1977.
doi:10.1109/TAP.1977.1141571

21. Mittra, R., W. L. Ko, and Y. Rahmat-Samii, "Transform approach to electromagnetic scattering," Proc. of the IEEE , Vol. 67, No. 11, 1486-1503, 1979.
doi:10.1109/PROC.1979.11509

22. Costanzo, S. and G. Di Massa, "An improved form of the spectral iteration technique," Journal of Electromagnetic Waves and Applications, Vol. 13, 1709-1723, 1999.
doi:10.1163/156939399X00178

23. Costanzo, S. and G. Di Massa, "Electromagnetic scattering problems solved by improved spectral iteration technique," Microwave and Optical Tech. Letters, Vol. 29, No. 6, 384-388, 2001.
doi:10.1002/mop.1185

24. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

25. Shen, C. Y., "Application of the discrete fourier transform method to plate problems," Progress In Electromagnetics Research, Vol. 5, 329-350, 1991.

26. Weaver, H. J., Theory of Discrete and Continuous Fourier Analysis, John Wiley & Sons, 1989.

27. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & Sons, 1978.

28. Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.

29. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propag., Vol. 34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871