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Abstract—The problem of electromagnetic scattering by thin metal
plates is formulated in terms of Electric Field Integral Equation and
solved by an improved form of the Spectral Iteration Technique. The
local solution at the edges of the plate is chosen as initial guess for
the unknown surface current in order to guarantee and enhance the
convergence of the iterative scheme. Numerical simulations on a square
conducting plate are presented to validate the proposed approach.

1. INTRODUCTION

The computational efficiency is a primary concern in the numerical
solution of electromagnetic scattering [1–3] problems. Factors such
as time and storage becomes more and more difficult to control
when considering bodies of arbitrary size and geometry. As well
known, the Moment Method [4–7] relies on matrix solutions which
can be computationally too expensive when considering complex
structures [8, 9]. A large interest has then been addressed to
iterative methods [10–13], mostly based on the Conjugate Gradient
algorithm [14–16], which guarantees monotonic convergence for
arbitrary structures [17, 18]. However, numerical difficulties are also
encountered in this scheme, as it suffers from machine round-off errors
causing loss of orthogonality and linear independence [19], so the global
error can decrease very slowly, resulting in a large number of iterations.
Moreover, an erroneous behavior is observed in the current density even
when using expansion functions for improving the rate of convergence
[20].

An iterative method alternative to the Conjugate Gradient is given
by the Spectral Iteration Technique (SIT) [20, 21], which manipulates
the Electric Field Integral Equation (EFIE) in the spectral domain to
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derive an iterative equation for the current density on the scatterer.
SIT approach is advantageous for two primary reasons. First of all,
it circumvents the problem due to matrices of prohibitively large
dimensions; in addition, the adoption of Fourier transform converts
the original integral equation into an algebraic one, which is easier to
manipulate. Nevertheless, the convergence of the SIT is not always
guaranteed, and even in successful applications it could require a
great number of iterations. In recent works [22, 23], the authors
investigated the convergence properties of the SIT for the problem of
scattering by strips and proposed an improved form which guarantees
the achievement of the solution in the presence of bodies having
arbitrary size. The strong enhancement of convergence is obtained
by simply choosing the local solution at the edges of the scatterer
as initial guess of the unknown current density. This leads to a
regularization of the integral equation, as the singular part of the
current (local-edge solution) is extracted and the scheme is iterated
with respect to the remaining regular part. In this paper, the Improved
Spectral Iteration Technique (ISIT) is applied to the analysis of three-
dimensional scattering by metallic plates. An iterative scheme is
derived which makes use of the scalar Green’s function in the spectral
domain. The assumption of the approximated local edge solution as
initial estimate of the unknown surface current enforces the boundary
condition, so assuring the exact solution for plates of arbitrary size
in a relatively small number of steps. Numerical simulations on a
square metallic plate are presented in order to check the efficiency of
the method, which can be easily extended to more complex structures
such as microstrip and stacked antennas.

2. FORMULATION

Let us consider the geometry in Fig. 1, where a perfectly conducting
thin plate is illuminated by an obliquely incident plane wave. For
the sake of simplicity, an incident electric field of unitary amplitude is
assumed, which is oriented along the x-axis and expressed as:

Ei = x̂ · e−jko(ysinθi−zcosθi) (1)

where ko is the free-space wavenumber.
The EFIE for the surface current JS induced on the plate is

obtained by requiring the tangential component of the total electric
field (incident plus scattered) to vanish at the plate surface S, so
having [24]:

Ei = k2
o

∫∫
S

JS(ρ′)G(ρ − ρ′)dρ′ + ∇
∫∫

S
∇ · JS(ρ′)G(ρ − ρ′)dρ′ (2)
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The terms ρ′ =
√

x′2 + y′2 and ρ =
√

x2 + y2 into Equation (2)
give the radial coordinates of the source and the observation points,
respectively, while

G(ρ − ρ′) =
e−jko

√
(x−x′)2+(y−y′)2

4π
√

(x − x′)2 + (y − y′)2

denotes the three-dimensional Green function confined to the xy plane.
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Figure 1. Thin conducting plate illuminated by an obliquely incident
plane wave.

Integro-differential Equation (2), describing the scattering by
metal plates of arbitrary shape, has a useful convolution structure
which can be efficiently handled by Fourier analysis [25]. As a matter
of fact, the following scalar expressions can be derived (see Appendix
A) from (2), which are valid for all (x, y) ∈ S:

Ei
x =

(
k2

o +
∂2

∂x2

)
Jx ∗ G +

∂2Jy

∂x∂y
∗ G (3)

0 =

(
k2

o +
∂2

∂y2

)
Jy ∗ G +

∂2Jx

∂y∂x
∗ G (4)

where JS = x̂Jx + ŷJy and the symbol (∗) denotes the convolution
operator.

To obtain an extended form of Equations (3) and (4), valid all
over the space, let us define the truncation operator as follows:

θ (A(r)) =

{
A(r), r ∈ S

0, r � S
(5)

with:
θ̂(A) = A − θ(A) (6)
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After applying relations (5) and (6) into expressions (3) and (4), the
following equations are derived (see Appendix A), which are valid on
the entire z = 0 plane:

θ
(
Ei

x

)
+ θ̂

[(
k2

o +
∂2

∂x2

)
Jx ∗ G +

∂2

∂x∂y
Jy ∗ G

]
=

=

(
k2

o +
∂2

∂x2

)
Jx ∗ G +

∂2

∂x∂y
Jy ∗ G (7)

0 =

(
k2

o +
∂2

∂y2

)
Jy ∗ G +

∂2

∂y∂x
Jx ∗ G (8)

Observe that Equation (8) remains unchanged due to the particular
choice of x̂-polarized incident electric field.

The convolution form of Equations (7) and (8) leads to apply the
convolution theorem [26] to rapidly perform computations in terms of
Fourier transform on the following spectral domain expressions (see
Appendix A):

θ̃
(
Ei

x

)
+ F{F−1{G̃1J̃xG̃}} − θ̃

(
F−1{G̃1J̃xG̃}

)
= G̃1J̃xG̃ (9)

0 =
(
k2

o − k2
y

)
J̃yG̃ − kykxJ̃xG̃ (10)

where:

G̃1 =
k2

o(k
2
o − k2

x − k2
y)

k2
o − k2

y

(11)

and:
G̃ =

η

2ko
· 1
k2

o − k2
x − k2

y

(12)

An iterative expression for the current component Jx can be easily
derived from Equation (9) as:

J (n+1)
x = F−1

{
G̃−1

1 G̃−1θ̃
(
Ei

x

)}
+

+F−1
{
G̃−1

1 G̃−1
(
F

{
F−1

{
G̃−1

1 J̃ (n)
x G̃−1

}}
−θ̃

(
F−1

{
G̃−1

1 J̃ (n)
x G̃−1

}))}
(13)

The current component Jy is then obtained from Equation (10) as:

J (n+1)
y = F−1

{
kykx

k2
o − k2

y

· J̃ (n+1)
x

}
(14)
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The iterative Equation (13) can be expressed in operator notation as
follows [22]:

Jx = h + L(Jx) (15)

where:
h = F−1

{
G̃−1

1 G̃−1θ̃
(
Ei

x

)}
(16)

L(Jx) = F−1
{
G̃−1

1 G̃−1
(
F

{
F−1

{
G̃−1

1 J̃xG̃−1
}}

+

−θ̃
(
F−1

{
G̃−1

1 J̃xG̃−1
}))}

(17)

The solution of Equation (15) are the fixed points [27] of the linear
integral operator L, so convergence properties of SIT scheme (13)
can be analyzed in terms of the Banach principle of contraction
mapping [27]. Recall that an operator L acting in a Banach space
B is said to be a contraction when, for any sequences x, y, the distance
between their images is closer than the distance between the objects
x, y in the domain L, that is [27]:

‖L(x − y)‖ ≤ ‖x − y‖ (18)

A transformation L with the contractive property (18) is responsible
for clustering the sequence {J (n)

x } of the iterative process (13) toward
a limit point. As a matter of fact, the Banach-Caccioppoli theorem
assures that, if the contraction operator L maps a complete metric
space M ⊂ B into itself, than it has a unique fixed point to which the
sequence {J (n)

x } converges from any initial point [27].
As yet proved in [23] for the problem of diffraction by strips and

strip gratings, the operator L of SIT scheme is not always a contraction
mapping. As a matter of fact, it is shown in [23] that the norm
of this operator results to be greater than one for small scatterers,
as compared to the wavelength of the excitation field. Nevertheless,
the existence and uniqueness of solutions for operator Equation (15)
is strictly related to the choice of a proper Banach space B, so a
crucial point is related to the finding of an initial guess {J (0)

x } which
gives the best approximation of the unknown in the sense that it has
smallest distance from the exact solution [27]. Our approach is based
on the consideration that the current distribution on the scatterer can
be regarded as the sum of a singular part, taking into account the
static solution, and a regular part, which models the correct oscillating
behavior. If assuming the local edge solution as initial guess for
the unknown current, a regularization is performed on the original
operator Equation (15), as the scheme (13) is iterated with respect
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to the regular part of the unknown, so the convergence is assured for
scatterers of arbitrary size and the rate of convergence is accelerated
itself. As a further advantage, the proposed method does not suffer
from inaccuracy problems in the presence of near grazing incidence,
when standard SIT scheme using asymptotic initial guess [20] gives
unsatisfactory results.

3. NUMERICAL RESULTS

SIT scheme is applied to the analysis of electromagnetic scattering
by thin metal plates of dimensions 2a = 2b = D (Fig. 1). First of
all, convergence properties of iterative process (13) are investigated
by computing the spectral norm of operator L into Equation (15) as
given by the maximum singular value obtained by a Singular Value
Decomposition (SVD) [28] algorithm. A plot of this norm as a function
of the plate side D is reported under Fig. 2. According to the Banach-
Caccioppoli theorem [27], L is a contraction operator if and only if
its norm is less than one, so numerical results in Fig. 2 show that
convergence of SIT scheme (13) is not theoretically guaranteed for
plates of small size (D < 0.5λ).
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Figure 2. Norm (maximum singular value) of operator L as a function
of plate side D.

As remarked in the previous section, SIT divergence problems
can be solved by properly choosing the initial guess for the unknown
current as strictly localized near the exact solution. This approach
is validated by computing the root mean square error for different
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Figure 3. Root mean square error for different values of the plate side
D (local-edge solution as initial guess for the current).

values of the plate side D (Fig. 3) when assuming as initial guess the
approximated local solution at the plate edges, which is given by the
expression:

J (0)
x =

√√√√√√√√
1 −

(
x

D/2

)2

1 −
(

y

D/2

)2 , − D

2
< x <

D

2
, − D

2
< y <

D

2
(19)

A monotonic error decrease can be observed in Fig. 3 even for
a small length D = 0.2λ, so demonstrating that the use of local-
edge solution as first-order approximation of the current assures the
convergence of SIT scheme (13) for plates of arbitrary size. A rapid
decrease of the error is obtained with ISIT, while a much larger number
of iterations is required by the Conjugate Gradient method, as shown
in Fig. 4 for the case D = λ [29].

The fast convergence rate of the proposed approach is tested by
computing the current distribution on a square 2λ × 2λ metal plate
illuminated by a normally incident (θi = 0◦) x̂-directed electric field
(Fig. 1). Equations (13) and (14) are applied and the correct edge
behavior (19) is assumed as initial guess for the dominant current
Jx, whose 3D plot is reported under Fig. 4. Comparisons between
results obtained with ISIT and those provided by NEC-Win Moment
Method code are shown in Figs. 5–6 for the cut x = 0 and y = 0,
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Figure 4. Convergence rate of the Conjugate Gradient method for a
square plate of side D = λ (from [29]).
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Figure 5. 3D plot of the dominant current Jx on a 2λ × 2λ metal
plate.

respectively. A more pronounced correct behavior at the edges of the
plate can be observed in the ISIT solution, which has required 10
iterations performed in 30 seconds on a Pentium III processor. For the
simulation with NEC-Win code, a mesh of 62 wires, 30 segments for
each wire and a spacing ∆ = λ/15 between segments is considered. The
required computational time has been equal to 8 minutes on the same
processor. Finally, the scattered field is computed form the known
current distribution on the plate. A good agreement with NEC-Win
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Figure 6. Dominant current Jx along the y-axis.
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Figure 7. Dominant current Jx along the x-axis.

result can be observed in Fig. 7 for the Eφ component at φ = 0◦.

4. CONCLUSIONS

The problem of three-dimensional scattering by thin metal plates is
formulated in terms of EFIE and solved by an Improved form of
the SIT. A strong enhancement in the convergence rate is obtained
by imposing the correct edge behavior at the edges of the plate as
initial guess of the unknown current distribution. The efficiency of the
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Figure 8. Normalized amplitude of scattered field (Eφ at φ = 0◦).

method is tested on square plates and a reduced computation time is
demonstrated whit respect to a commercial Moment Method code.

APPENDIX A.

A compact form of Equation (2) in terms of convolution operator (∗)
can be written as:

x̂Ei
x = k2

o (x̂Jx + ŷJy) ∗ G + ∇{[∇ · (x̂Jx + ŷJy)] ∗ G} (A1)

By developing the term ∇∇ · (x̂Jx + ŷJy), the following expression is
derived from Equation (A1):

x̂Ei
x = k2

o (x̂Jx + ŷJy) ∗ G+

+

[
x̂

(
∂2Jx

∂x2
+

∂2Jy

∂x∂y

)
+ ŷ

(
∂2Jx

∂y∂x
+

∂2Jy

∂y2

)]
∗ G (A2)

Equations (3) and (4) are then obtained by projection of Equation (A2)
along x and y axes.
After application of truncation operator (5), expressions (7) and (8)
are manipulated in the Fourier transform domain to have:

θ̃
(
Ei

x

)
+ F

{
F−1

{
(k2

o − k2
x)J̃xG̃ − kxkyJ̃yG̃

}}
+
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−θ̃
(
F−1

{
(k2

o − k2
x)J̃xG̃ − kxkyJ̃yG̃

})
= (k2

o − k2
x)J̃xG̃ − kxkyJ̃yG̃

(A3)
0 = (k2

o − k2
y)J̃yG̃ − kykxJ̃xG̃ (A4)

The term:
(k2

o − k2
x)J̃xG̃ − kxkyJ̃yG̃ (A5)

can be properly simplified when combined with Equation (A4) to have:

(k2
o − k2

x)J̃xG̃ − kxky ·
kykx

k2
o − k2

y

J̃xG̃ = G̃1J̃xG̃ (A6)

with the spectral domain functions G̃1 and G̃ defined by Equations (11)
and (12).

By inserting expression (A6) into relation (A3), Equation (9) is
finally derived.
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