Vol. 8
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-05-30
Electromagnetic Coupling through Arbitrary Apertures in Parallel Conducting Planes
By
Progress In Electromagnetics Research B, Vol. 8, 29-42, 2008
Abstract
We propose a numerical methodto solve the problem of coupling through finite, but otherwise arbitrary apertures in perfectly conducting and vanishingly thin parallel planes. The problem is given a generic formulation using the Method of Moments and the Green's function in the region between the two planes is evaluated using Ewald's method. Numerical applications using Glisson's basis functions to solve the problem are demonstrated and compared with previously published results and the output of FDTD software.
Citation
Jean-Baptiste Robertson, Edward (Ted) Parker, Benito Sanz-Izquierdo, and John Batchelor, "Electromagnetic Coupling through Arbitrary Apertures in Parallel Conducting Planes," Progress In Electromagnetics Research B, Vol. 8, 29-42, 2008.
doi:10.2528/PIERB08042503
References

1. Butler, C. M. and K. R. Umashankar, "Electromagnetic penetration through an aperture in an infinite, planar screen separating two half spaces of different electromagnetic properties ," Radio Science, Vol. 11, 1976.
doi:10.1029/RS011i007p00611

2. Butler, C. M., Y. Rahmat-Samii, and R. Mittra, "Electromagnetic penetration through apertures in conducting surfaces," IEEE Transactions on Electromagnetic Compatibility, Vol. AP-26, No. 1, 1978.

3. Harrington, R. F. and J. R. Mautz, "Electromagnetic transmission through an aperture in a conducting plane," Archiv fuer Elektronik und Uebertragungstechnik, Vol. 31, 1977.

4. Harrington, R. F., Field Computation by Moment Methods, Macmillan Series in Electrical Sciences, The Macmillan Company, 1968.

5. Leviatan, Y., R. F. Harrington, and J. R. Mautz, "Electromagnetic transmission through apertures in a cavity in a thick conductor," IEEE Transactions on Antennas and Propagation, Vol. AP-30, No. 6, 1982.

6. Leviatan, Y., "Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 1, 1988.
doi:10.1109/22.3480

7. Rahmat-Samii, Y., "Electromagnetic pulse coupling through an aperture into a two-parallel-plate region," IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-20, No. 3, 1978.
doi:10.1109/TEMC.1978.303676

8. Ewald, P. P., "Die berechnung optischer und elektrostatischer gitterpotentiale," Annalen der Physik, Vol. 369, No. 3, 1921.
doi:10.1002/andp.19213690304

9. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," Journal of Computational Physics, Vol. 63, No. 1, 1986.
doi:10.1016/0021-9991(86)90093-8

10. Capolino, F., D. Wilton, and W. Johnson, "Efficient computation of the 2-d Green's function for 1-d periodic structures using the Ewald method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 2005.
doi:10.1109/TAP.2005.854556

11. Park, M.-J. and S. Nam, "Efficient calculation of the Green's function for multilayered planar periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1998.

12. Park, M.-J., J. Park, and S. Nam, "Efficient calculation of the Green's function for the rectangular cavity," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 3, 1998.

13. Parker, E. A., J. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, "Minimal size FSS for long wavelength operation," Electronic Letters, Vol. 44, March 2008.

14. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 1982.
doi:10.1109/TAP.1982.1142818

15. Harrington, R. F., Time-harmonic Electromagnetic Fields, Electrical and Electronic Engineering Series, McGraw-Hill Book Company, Inc., 1961.

16. Jorgenson, R. E., L. I. Basilio, W. A. Johnson, L. K. Warne, D. W. Peters, D. R. Wilton, and F. Capolino, "Analysis of electromagnetic scattering by nearly periodic structures: An LDRD report,", Tech. Rep. SAND2006-6833, Sandia National Laboratories, 2006.

17. Kustepeli, A. and A. Q. Martin, "On the splitting parameter in the Ewald method," IEEE Transactions on Microwave and Guided Wave Letters, 2000.