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Abstract—We propose a numerical method to solve the problem of
coupling through finite, but otherwise arbitrary apertures in perfectly
conducting and vanishingly thin parallel planes. The problem is
given a generic formulation using the Method of Moments and the
Green’s function in the region between the two planes is evaluated
using Ewald’s method. Numerical applications using Glisson’s basis
functions to solve the problem are demonstrated and compared with
previously published results and the output of FDTD software.

1. INTRODUCTION

The problem of electromagnetic coupling through arbitrary apertures
in a perfectly conducting and vanishingly thin plane has been studied
by Butler et al. [1, 2] was well as Harrington and Mautz [3] using
the equivalence principle to divide the problem into two sub-problems
involving the radiation of magnetic sources on a ground plane. Using
the continuity of the tangential component of the electric and magnetic
fields through the apertures, these authors were able to constrain the
solution of these two sub-problems and obtain systems that could be
reduced to linear equations thanks to the Method of Moments [4].

This basic approach has later been generalized to a class of
situations involving three regions, such as that of half-spaces separated
by a cavity in a thick ground plane [5] or by a parallel-plate
waveguide [6]. In these works, simplifications as to the shape of the
apertures and distribution of the magnetic currents in the apertures are
necessary in order to obtain tractable numerical problems. As a result,
there is little application of the Method of Moments in the literature
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to evaluate of the transmission through arbitrary apertures in parallel
plates.

Rahmat-Samii [7], on the other hand, solved the similar problem of
coupling through an arbitrary aperture into a two-parallel-plate region
without assumptions as to the shape of the magnetic currents by using
a Green’s function approach. As the author of this last work points out,
however, a number of problems arise in the evaluation of the Green’s
function: the series representing it is poorly convergent in general and
diverges when the separation between the plates is a multiple of half
the wavelength of the illuminating wave, making it difficult to put the
method to general use.

Fortunately, the popularization of Ewald’s summation method [8]
by Jordan et al. [9] has made it possible to solve a number of problems
initially affected with comparable convergence issues, such as the
evaluation of the Green’s function for periodic point sources [10] or
frequency selective surfaces [11]. Furthermore, since the method of
images often leads to a formulation of Green’s functions in terms
of sums of the contribution of periodic images, Ewald’s method has
allowed for significant improvements in computational efficiency in non
periodic problems such as [12], that describes a method for the fast and
accurate calculation of the Green’s function in a rectangular cavity with
six metallic walls.

In this paper, the problem of coupling through arbitrary apertures
into a two-parallel-plate region, initially treated by Rahmat-Samii [7],
is revisited and the problems associated with the evaluation of the
Green’s function are solved by application of Ewald’s summation
techniques. The method is then generalized to three-region problems,
to allow for the evaluation of the coupling between two half-spaces
separated by a two-plates region. The motivation of this work has been
its application to cascaded layers of finite arrays of slot type elements,
used as Frequency Selective Surfaces (FSS) for long wavelengths [13].

2. FORMULATION OF THE PROBLEM

2.1. Coupling through an aperture in a two-plates region

The geometry under consideration is shown in Figure 1: the space
labelled as Region 1 is bordered by two infinite conductive planes
situated at z = 0 and z = d and is linked with the half-space labelled
as Region 0 by way of a finite but otherwise arbitrary aperture in the
plate situated at z = 0. Both regions are filled with an homogeneous
material and Region 0 is illuminated with an harmonic radiation.

Following [5], we replace this problem by two equivalent sub-
problems by substituting the apertures on the plane at z = 0 by
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Figure 1. Setup and notations for problem of coupling through an
aperture in a two-parallel-plate region.

a magnetic current distribution on the unslotted planes: due to the
continuity of the tangential component of the electric field, the aperture
is replaced by a by a magnetic current − �M as viewed from Region 0,
and by a magnetic current �M as viewed from Region 1.

As a result, the total magnetic fields �H(0) and �H(1) in Regions 0
and 1 can be written as

�H(0) = �H(sc) − �H(0)( �M) (1)
�H(1) = �H(1)( �M) (2)

where �H(sc) is total the magnetic field in Region 0 due to the
illumination of the electromagnetic wave on the unslotted plate and
�H(i)( �M) is the magnetic field in Region i due to the magnetic current
�M .

Since the tangential component of the magnetic field is continuous
through the aperture, we can write, in the aperture

[
�H(1)( �M) + �H(0)( �M)

]
× �uz = �H(sc) × �uz (3)

As �H(i) is linear with regards to �M , we can use the Method of
Moments in order to obtain a linear system to solve these equations:
Let us first decompose the magnetic currents into the a linear
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combination of suitable basis functions:

�M(r) =
∑
n∈N

In �fn(r) (4)

Replacing the magnetic currents by this expression in Equation (3)
and testing the results against �fp × �uz yields

Y · I = V (5)

with the load V of the system defined by

Vp =< �H(sc), �fp > (6)

and the generalized admittance Y of the system defined by

Yp,n =< �H(1)(�fn) + �H(0)(�fn), �fp > (7)

with

< �α, �β >=
∫

A
�α(r′) · �β(r′) dr′ (8)

the inner product for the aperture A.
The evaluation of such a linear system depends on the basis

functions used and on the availability of suitable Green’s functions
for all regions. The terms of the generalized admittance matrix are
then obtained by using (see for example [2, 14])

�H(i)( �M) = −jωε �F (i) −∇Φ(i) (9)

with F (i) the vector electric potential and Φ(i) the scalar magnetic
potential in Region i contributed by �M , defined by

�F (i)(r) =
∫

A
g(i)(r, r′) �M(r′) dr′ (10)

and

Φ(i)(r) = − 1
jωµ

∫
A
g(i)(r, r′)

(
�∇S · �M

)
dr′ (11)

with g(i) the Green’s function for the magnetic problem for Region i.
The evaluation of g(i), for i = 0, 1, is treated in Section 3.
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2.2. Transmission through Apertures in a Two-Plates
Region

The extension of the previous problem to that of the transmission
through a two-plates region, represented in Figure 2, follows easily from
the previous section: the aperture in Plane 1, as seen from Region 0,
is substituted by a magnetic current − �M1, and by �M1 as seen from
Region 1. Likewise, the aperture in Plane 2 is replaced by the magnetic
currents − �M2 and �M2 as seen from Region 1 and Region 2 respectively.

d

Incident wave

Region 0 Region 1

z = dz = 0

Aperture 1

Aperture 2

Region 2

Plane 2Plane 1

Figure 2. Setup and notations for problem of transmission through
apertures through a two-parallel-plate region.

The total magnetic fields �H(0), �H(1) and �H(2) in the Regions 0, 1
and 2 can be written as

�H(0) = �H(sc) − �H(0)( �M1) (12)
�H(1) = �H(1)( �M1) − �H(1)( �M2) (13)
�H(1) = �H(1)( �M2) (14)

and due to the continuity of the tangential part of the magnetic field
through both apertures, we can write: for Aperture 1:

[
�H(1)( �M1) + �H(0)( �M1)

]
× �uz = �H(sc) × �uz (15)

and for Aperture 2:
[
�H(1)( �M1) − �H(1)( �M2)

]
× �uz = �0 (16)
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The magnetic currents are projected on an appropriate set of basis
functions

�M1(r) =
∑
n∈N

I1,n
�f1,n(r) r ∈ Aperture 1 (17)

�M2(r) =
∑
m∈N

I2,m
�f2,m(r) r ∈ Aperture 2 (18)

and these expressions are replaced in Equations (15) and (16)
respectively. Testing the results against �f1,p × �uz and �f2,p × �uz yields

(
Y (1,1) Y (1,2)

Y (2,1) Y (2,2)

) [
I1
I2

]
=

[
V
0

]
(19)

with the load V of the system defined by

Vp =< �H(sc), �f1,p >1 (20)

and the generalized admittances of the system defined by

Y (1,1)
p,n =< �H(1)(�f1,n) + �H(0)(�f1,n), �f1,p >1

Y (1,2)
p,m = − < �H(1)(�f2,m), �f1,p >1

Y (2,1)
p,n = − < �H(1)(�f1,n), �f2,p >2

Y (2,2)
p,m =< �H(1)(�f2,m) + �H(2)(�f2,m), �f2,p >2

(21)

with < �α, �β >i the inner product for Aperture i.

3. EVALUATION OF THE GREEN’S FUNCTION

In Region 0, g(0) is readily obtained by application of the method of
images: as seen from the region of interest, a magnetic current source
placed on a ground plane is equivalent to a magnetic source of doubled
intensity in free space, hence

g(0)(r, r′) =
e−jk|r−r′|

2π|r − r′| (22)

In Region 1, the Green’s function can be obtained by using image
theory [15]: a magnetic current �M on the plane z = 0 generates a
problem equivalent to that of a series of magnetic images of twice its
magnitude and situated at the coordinates zn = 2nd for n ∈ N. As
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a consequence, the Green’s function in the two-plates region can be
written as

g(1)(r, r′) =
∑
n∈Z

e−jkRn

2πRn
(23)

where r′ is a point situated at z = 0 and

Rn(r, r′) =
√

(x− x′)2 + (y − y′)2 + (z − 2nd)2 (24)

As pointed out in [7], the summation in Equation (23) is not
well behaved for a lossless medium between the two ground planes:
its precise evaluation requires the summation of a large number of
terms, making its use impractical, if possible at all. As soon as losses
are introduced, however, all series involved in what follows become
absolutely convergent, making it possible to easily manipulate and
reorder terms of the series: following Harrington [15], we study the
resolution of the problem by assuming infinitesimal losses and later
studying the limits of the solution as losses tend to zero.

Following [9, 12], we use Ewald’s method [8] to accelerate the
convergence of this series and start by noting that

e−jkR

R
=

2√
π

∫ ∞

0
e−R2s2+ k2

4s2 ds (25)

for a suitably chosen path of integration. Note that a review and
further information about this method is available in [16].

Let us choose a splitting parameter L and note g = g1 + g2 with

g1(r, r′) =
1

π
√
π

∑
n∈N

∫ L

0
e−R2s2+ k2

4s2 ds (26)

g2(r, r′) =
1

π
√
π

∑
n∈N

∫ ∞

L
e−R2s2+ k2

4s2 ds (27)

Using the identity

2√
π

∫ ∞

L
e−R2

ns2+ k2

4s2 ds =
1

2Rn

[
ejkRn erfc

(
RnL+

jk

2L

)

+e−jkRn erfc
(
RnL− jk

2L

) ]
(28)

with erfc the complementary error function, g2 can be evaluated
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readily:

g2(r, r′) =
1
4π

∑
n∈Z

1
Rn

[
ejkRn erfc

(
RnL+

jk

2L

)

+e−jkRn erfc
(
RnL− jk

2L

) ]
(29)

In order to achieve an acceptable convergence rate, Poisson’s
summation is used in the evaluation of g1: defining ρ =√

(x− x′)2 + (y − y′)2, β = z and

f(x) =
∫ L

0
e−[ρ2+(β−x)2]s2+ k2

4s2 ds (30)

we have

g1(r, r′) =
1

2dπ
√
π

∑
n∈Z

f̃
(nπ
d

)
(31)

with f̃ the Fourier transform of f . Following a very similar course of
calculation in [10], f̃ can be evaluated as

f̃(α) =
√
π

2
e−jβα

∑
p≥0

(−1)p

p!
(ρL)2pEp+1

(
α2 − k2

4L2

)
(32)

with Ep the pth exponential integral.
Further details on these calculations and a discussion on the

evaluation of individual terms are available in Appendix A.
The number of terms needed to achieve convergence of the series

(at a truncation of 10−6, for example), is strongly dependant on the
value of the splitting parameter L, as shown in Figure 3. In the
cases presented, numerical erosion occurs for low values of L and a
total of only a few hundred terms, including the evaluation of f̃ , are
needed to reach convergence. This contrasts with the evaluation of the
summation of the Green’s function in its natural form where, at best,
the number the number of terms to take into account is proportional
to the inverse of the truncation error required.

4. NUMERICAL RESULTS

4.1. Coupling through a Square Aperture into a
Two-Parallel-Plate Region

Let us consider a geometry of the form shown in Figure 1, where the
aperture between Region 0 and Region 1 is a square slot of width λ/2
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Figure 3. Number of terms in the series to reach a truncation error
of 10−6, for ρ = 0.1 m, ρ = 0.5 m and ρ = 1 m, with d = 2.8λ and
λ = 0.5 m.

centered at (0, 0), aligned with the axis (�ux, �uy) and illuminated by
a plane wave of wavelength λ propagating in the direction �uz and of
polarization �E = �ux. Following [7], we choose the separation between
the two plates as d = 2.8λ.
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Figure 4. Magnitude of Ex in the λ/2×λ/2 aperture, sampled along
the (O, �ux) and (O, �uy) axis. Dots represent results from the present
method and the thick line those calculated with FDTD software.

Figure 4 shows the magnitude of Ex in the aperture sampled along
the axis (O, �ux) and (O, �uy) respectively, as obtained with the present
method and FDTD software. We observe a good agreement between
the FDTD and the present method. These results are also consistent
with those of Rahmat-Samii [7].
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4.2. Transmission through Square Apertures in Parallel
Plates

Let us now consider a geometry of the form shown in Figure 2. We
choose the two apertures to be squares of width λ/2 centered on the
original and aligned with the axis, with the same illumination as in the
previous section. We choose the separation between the two plates as
d = 0.3λ.

A comparison between the results of an FDTD method and the
present method is presented in Figure 5 and shows a good agreement on
the profile of the tangential part of the electric field on both apertures.
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Figure 5. Magnitude of Ex in the λ/2×λ/2 apertures, sampled along
the axis. Continuous lines represent the output of FDTD software in
the left (thin black) and right (thick grey) apertures, the squares and
diamonds represent the output of the present method in the left and
right apertures respectively.

5. CONCLUSION AND FUTURE WORK

A method has been presented that allows for the robust evaluation
of the transmission through apertures in a two-plates region. Due
to its use of Ewald’s summation, the method is immune to problems
and breakdowns commonly associated with the infinite summation of
free space Green’s functions, and terms of the linear system can be
evaluated relatively rapidly and with good accuracy. Its use with
flexible boundary elements such as Glisson’s makes it possible to treat
apertures of essentially arbitrary shapes.
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As with other applications of the Method of Moments, the
calculation of the admittance central to the resolution depends only
on the geometry of the problem and the frequency of the illumination:
variations in the nature of the illumination (i.e., plane or spherical
wave), its angle of incidence or polarization have no consequence in the
assembly of the associated linear system and only require its resolution
with a new load, resulting, for example, in significant savings in the
evaluation of angular sweeps.

The free splitting parameter L present in Ewald’s summation has a
significant influence on the amount of calculations needed to evaluate
the Green’s function, as seen in Figure 3. Values of this parameter
that are either too low or too large respectively lead to numerical
erosion and slower convergence, a behavior that evidently hints at
the existence of some optimal value of the parameter based on the
wavelength of operation, the separation between the two parallel planes
and the variable ρ. As the quality and speed of implementation of the
method are expected to be strongly related to an optimal choice of
this parameter, future works should include parametric or analytical
studies of this behavior. A discussion on a number of these issues and
such an analysis are available in [16, 17] for different applications of
Ewald’s method.

Recent applications of the aperture problem include experimental
work on finite slot Frequency Selective Surfaces at mobile communica-
tion wavebands in connection with the electromagnetic architecture of
buildings [13]. It is expected that the present method, along with tech-
niques for cavities based on the results of [12], will allow for a better
modelling of these situations.
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APPENDIX A. DETAILS OF THE CALCULATIONS

Calculations presented here are derived from similar ones found
in [10, 16].

In Equation (26), g1 is defined by

g1(r, r′) =
1

π
√
π

∑
n∈Z

∫ L

0
e−R2s2+ k2

4s2 ds (A1)
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With ρ =
√
x2 + y2 and β = z, we can write

g1(r, r′) =
1

π
√
π

∑
n∈Z

f(2nd) (A2)

with

f(x) =
∫ L

0
e−(ρ2+(β−x)2)s2+ k2

4s2 ds (A3)

and by application of Poisson’s summation

g1(r, r′) =
1

2dπ
√
π

∑
n∈Z

f̃
(nπ
d

)
(A4)

The Fourier transform f̃ of f is defined by

f̃(α) =
∫ +∞

−∞
f(x)e−jαx dx (A5)

and can be developped into

f̃(α) =
∫ L

s=0
e−ρ2s2+ k2

4s2
−βs2

[ ∫ +∞

x=−∞
e−x2s2+(2βs2−jα)x dx

]
ds (A6)

As pointed out in [10],
∫ +∞

−∞
e−ax2+bxdx =

√
π

a
e

b2

4a , hence

f̃(α) =
√
πe−jαβ

∫ L

s=0

1
s
e−ρ2s2+ k2−α2

4s2 ds (A7)

By using s = 1
4u2 as the integration variable, noting that e−

ρ2

4u =∑
p≥0

(−1)p(ρ/2)2p

p!up and later using v = 4L2u as the integration variable,
we find

f̃(α) =
√
π

2
e−jβα

∑
p≥0

(−1)p

p!
(ρL)2pEp+1

(
α2 − k2

4L2

)
(A8)

with Ep the pth integral equation, defined by

Ep(x) =
∫ ∞

1

e−xt

tp
dt (A9)
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Ep can be calculated with the recurrence formula Ep+1(x) = 1
p

[
e−x −

xEp(x)
]

with E1(x) = −EI(−x) − jπ for x such as Re(x) < 0 and
Im(x) � 1. E1(x) and EI(x) can be evaluated using off-the-shelf
mathematical packages.

It can be noted that Ep(x) is monotone decreasing with regards
to p. Likewise, (ρL)2p/p! is monotone decreasing as soon as p > (ρL)2,
hence the series conforms to Leibniz criterion for alternating series as
soon as this condition is satisfied, making it possible to evaluate the
distance to convergence of the summation with an arbitrary precision.
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