Vol. 83
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-06-06
Analysis of TF-SF Boundary for 2D-FDTD with Plane P-Wave Propagation in Layered Dispersive and Lossy Media
By
Progress In Electromagnetics Research, Vol. 83, 157-172, 2008
Abstract
In the application of two-dimension (2D) finite-difference time-domain (FDTD) to scattering analysis of object embedded in layered media, the incident electromagnetic wave propagation is much more complicated, it can not inject the plane wave source by traditional method. To solve this problem, the Π-shape total-field/scatteringfield (TF-SF) boundary scheme is presented. The side TF-SF boundaries are governed by the modified 1D Maxwell's equations, but the discretization for which to p-wave is more difficult than n-wave. Then an auxiliary magnetic variable is used, which can develop the modified 1D-FDTD to p-wave without any approximately. To truncate the modified 1D-FDTD, the convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is also given. Examples showthe feasibility and applicability of proposed Π-shape TF/SF boundaries scheme.
Citation
Yan-Nan Jiang, De-Biao Ge, and Shi-Jing Ding, "Analysis of TF-SF Boundary for 2D-FDTD with Plane P-Wave Propagation in Layered Dispersive and Lossy Media," Progress In Electromagnetics Research, Vol. 83, 157-172, 2008.
doi:10.2528/PIER08042201
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. on Antennas Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Wong, P. B., G. L. Tyler, J. E. Baron, et al. "A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surface," IEEE Trans. on Antennas Propagation, Vol. 44, No. 4, 504-513, 1996.
doi:10.1109/8.489302

3. Yun, Y., B. Chen, D.-G. Fang, et al. "A new2-D FDTD method applied to scattering by infinite objects with oblique incidence," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 756-762, 2005.
doi:10.1109/TEMC.2005.860559

4. Winton, S. C., P. Kosmas, and C. M. Rappaport, "FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary layered media," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1721-1728, 2005.
doi:10.1109/TAP.2005.846719

5. Capoglu, I. R. and G. S. Smith, "A total-field/scattered-field plane-wave source for the FDTD analysis of layered media," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 158-169, 2008.
doi:10.1109/TAP.2007.913088

6. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.

7. Oguz, U. and L. Gurel, "Interpolation techniques to improve the accuracy of the plane wave excitations in the finite difference time domain method," Radio Science, Vol. 32, No. 6, 2189-2199, 1997.
doi:10.1029/97RS02515

8. Oguz, U., L. Gurel, and O. Arıkan, "An efficient and accurate technique for the incident-wave excitations in the FDTD method," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 6, 869-882, 1998.
doi:10.1109/22.681215

9. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of CFS-PML for arbitrary media," Microwave Opt. Tech. Lett., Vol. 27, No. 12, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

10. Luebbers, R. J., F. P. Hunsberger, K. S. Kunz, et al. "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. on EMC, Vol. 32, No. 3, 222-227, 1990.

11. Converse, M., E. J. Bond, S. C. Hagness, et al. "Ultrawide-band microwave space-time beam forming for hyperthermia treatment of breast cancer: A computational feasibility study," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1876-1889, 2004.
doi:10.1109/TMTT.2004.832012

12. Kong, J. A., Electromagnetic Wave Theory, Higher Education Press, 2002.

13. Rui, P.-L. and R.-S. Chen, "Implicitly restarted gamres fast Fourier transform method for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 973-986, 2007.
doi:10.1163/156939307780748968

14. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

15. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

16. Yang, L.-X., D.-B. Ge, and B. Wei, "FDTD/TDPO hybrid approach for analysis of EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

17. Uduwawala, D., "Modeling and investigattion of planar parabolic dipoles for GPR application: A comparison with bow-tie using FDTD," Journal of ElectroMagnetic Waves and Applications, Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

18. Tan, K.-B., L. Li, and C.-H. Liang, "Canonical analysis for disspersive electromagnetic medium," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1499-1505, 2007.

19. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.

20. Wang, M.-J., Z.-S. Wu, and Y.-L. Li, "Investigation on the scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchhoff approximation," Progress In Electromagnetics Research B, Vol. 4, 223-235, 2008.

21. Abd-El-Ranouf, H. E. and R. Mittra, "Scattering analysis of dielectric coated cones," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1857-1871, 2007.

22. Wang, M. Y., J. Xu, J. Wu, et al. "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777