Vol. 7
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-29
Class of Electromagnetic BI-Quadratic (Bq) Media
By
Progress In Electromagnetics Research B, Vol. 7, 281-297, 2008
Abstract
Electromagnetic fields and media can be compactly represented by applying the four-dimensional differential-form formalism. In particular, classes of linear (bi-anisotropic) media can be defined in terms of the medium dyadic mapping between the electromagnetic two-forms. As a continuation to the process started by medium dyadics satisfying linear and quadratic algebraic equations, the class of biquadratic (BQ) media is defined by requiring that the medium dyadics satisfy the bi-quadratic algebraic equation. It is shown that the corresponding four three-dimensional medium dyadics are required to satisfy only two dyadic conditions. After studying general properties of BQ media, a special case is analyzed in detail as an example.
Citation
Ismo Veikko Lindell, "Class of Electromagnetic BI-Quadratic (Bq) Media," Progress In Electromagnetics Research B, Vol. 7, 281-297, 2008.
doi:10.2528/PIERB08041602
References

1. Flanders, H., Differential Forms, Academic Press, 1963.

2. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-696, 1981.
doi:10.1109/PROC.1981.12048

3. Hehl, F. W. and N. Yu. Obukhov, Foundations of Classical Electrodynamics, 2003.

4. Lindell, I. V., Differential Forms in Electromagnetics, Wiley and IEEE Press, 2004.

5. Lindell, I. V. and K. H.Wallen, "Wave equations for bi-anisotropic media in differential forms," Journal of Electromagnetic Waves and Applications, Vol. 16, 1615-1635, 2002.
doi:10.1163/156939302X01038

6. Lindell, I. V., "Differential forms and bi-anisotropic media," Electromagnetics, Vol. 26, 191-201, 2006.
doi:10.1080/02726340600570278

7. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, 861-869, 2005.
doi:10.1163/156939305775468741

8. Lindell, I. V., "Class of electromagnetic SD media," Metamaterials, 2008.

9. Lindell, I. V., "Electromagnetic fields in self-dual media in differential-form representation," Progress In Electromagnetics Research, Vol. 58, 319-333, 2006.
doi:10.2528/PIER05072201

10. Olyslager, F. and I. V. Lindell, "Electromagnetics and exotic media: A quest for the Holy Grail," IEEE Ant. Propag. Mag., Vol. 44, No. 2, 48-58, April 2002.
doi:10.1109/MAP.2002.1003634

11. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

12. Lindell, I. V. and K. H. Wallen, "Differential-form electromagnetics and bi-anisotropic Q-media," Journal of Electromagnetic Waves and Applications, Vol. 18, 957-968, 2004.
doi:10.1163/156939304323105772

13. Lindell, I. V. and K. H. Wallen, "Generalized Q-media and field decomposition in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, 1045-1056, 2004.
doi:10.1163/1569393042955397

14. Lindell, I. V., "Affine transformations and bi-anisotropic media in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, 1259-1273, 2004.
doi:10.1163/1569393042955315

15. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002

16. Lindell, I. V., "The class of electromagnetic IB-media," Progress In Electromagnetics Research, Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302

17. Lindell, I. V., "Inverse for the skewon medium dyadics," Progress In Electromagnetics Research, Vol. 63, 21-32, 2006.
doi:10.2528/PIER06062201